Prevalence and molecular genetic features of epidermolysis bullosa in Krasnodar Krai
https://doi.org/10.25207/1608-6228-2020-27-5-88-99
Abstract
Background. Epidermolysis bullosa defi nes a clinically and genetically heterogeneous group of severe orphan disorders manifested with a congenital propensity for bullae (blisters) propagation on skin and mucous membranes of oesophagus, intestine, respiratory and urogenital systems. In the Russian Federation, its incidence rate is 1 per 50 –300 thousand of people. The actual disease prevalence in Krasnodar Krai is undefi ned. The genetic basis of this hereditary pathology has been studied insuffi ciently.
Objectives. Epidemiological description of epidermolysis bullosa in Krasnodar Krai and detection of its chemical DNA signatures.
Мethods. The prevalence of epidermolysis bullosa in Krasnodar Krai was studied with a relevant patient sample selected in an electronic archive of primary physician visits during 2010–2018. Chemical DNA signatures were detected as levels of blood serum 8-oxoguanine, a common marker of oxidative lesion. The 8-oxoguanine concentration was determined in ELISA assays with monoclonal antibodies. Statistical signifi cance was estimated with the chi-square and Mann–Whitney U test criteria for small samples.
Results. A retrospective study revealed the total incidence rate of epidermolysis bullosa in Krasnodar Krai as 0.96 per 100,000 population, with prevalence in people aged under 30 years (75.5% of all patients, p < 0.01). In Krasnodar Krai, epidermolysis bullosa simplex accounts for 54.7% of total observed cases. Lethal form was diagnosed in 13.2%, and dystrophic type — in 5.7%. Diagnosis was incomplete as per type in 26.4% of patients. Serum 8-oxoguanine concentration in pathology comprised 14.8 ± 1.9 ng/mL, which exceeds 1.9-fold the control values of 7.7 ± 1.3 ng/mL (p < 0.01).
Conclusion. The epidemiological profi le of epidermolysis bullosa in Krasnodar Krai was described. The disease prevalence, areal occurrence, predominant types and high-risk population groups were determined. A quarter of all patients had incomplete diagnosis as per the disease type. Elevated levels of 8-oxoguanine, the main product of DNA oxidation, indicate both genomic lesion and oxidative stress associated with epidermolysis bullosa.
About the Authors
I. I. PavlyuchenkoIvan I. Pavlyuchenko — Dr. Sci. (Med.), Prof., Head of the Chair of Biology with training in medical genetics
Mitrofana Sedina str., 4, Krasnodar 350063
L. R. Gusaruk
Russian Federation
Lyubov R. Gusaruk — Cand. Sci. (Biol.), Assoc. Prof., Chair of Biology with training in medical genetics
Mitrofana Sedina str., 4, Krasnodar 350063
E. E. Tekutskaya
Elena E. Tekutskaya — Cand. Sci. (Chem.), Assoc. Prof., Chair of Radiophysics and Nanotechnology
Stavropolskaya str., 149, Krasnodar, 350040
I. T. Rubtsova
Irina T. Rubtsova — Cand. Sci. (Med.), Assoc. Prof., Chair of Public Health, Healthcare and History of Medicine
Mitrofana Sedina str., 4, Krasnodar 350063
References
1. Kubanov А.A., Karamova A.E., Al’banova V.I., CHikin V.V., Monchakovskaya E.S. Congenital epidermolysis bullosa: peculiarities of epidermis regeneration and methods of treatment. Vestnik Dermatologii i Venerologii. 2017; 93(4): 28-37. (In Russ., English abstract). DOI: 10.25208/0042-4609-2017-93-4-28-37
2. Shinkuma S. Dystrophic epidermolysis bullosa: a review. Clin. Cosmet. Investig. Dermatol. 2015; 8: 275- 284. DOI: 10.2147/CCID.S54681
3. Uitto J., Bruckner-Tuderman L., McGrath J.A., Riedl R., Robinson C. EB2017-Progress in Epidermolysis Bullosa Research toward Treatment and Cure. J. Invest. Dermatol. 2018; 138(5): 1010-1016. DOI: 10.1016/j.jid.2017.12.016
4. Kiritsi D., Garcia M., Brander R., Has C., Meijer R., Jose Escámez M., Kohlhase J., van den Akker P.C., Scheffer H., Jonkman M.F., Del Rio M., Bruckner-Tuderman L., Pasmooij A.M.G. Mechanisms of natural gene therapy in dystrophic epidermolysis bullosa. J. Invest. Dermatol. 2014; 134(8): 2097-2104. DOI: 10.1038/jid.2014.118
5. Kühl T., Mezger M., Hausser I., Guey L.T., Handgretinger R., Bruckner-Tuderman L., Nyström A. Collagen VII Half-Life at the Dermal-Epidermal Junction Zone: Implications for Mechanisms and Therapy of Genodermatoses. J. Invest. Dermatol. 2016; 136(6): 1116- 1123. DOI: 10.1016/j.jid.2016.02.002
6. Bruckner-Tuderman L., Has C. Disorders of the cutaneous basement membrane zone — the paradigm of epidermolysis bullosa. Matrix Biol. 2014; 33: 29-34. DOI: 10.1016/j.matbio.2013.07.007
7. Cutlar L., Greiser U., Wang W. Gene therapy: pursuing restoration of dermal adhesion in recessive dystrophic epidermolysis bullosa. Exp. Dermatol. 2014; 23(1): 1-6. DOI: 10.1111/exd.12246
8. Marinkovich M.P., Tang J.Y. Gene therapy for epidermolysis bullosa. J. Invest. Dermatol. 2019;139(6):1221- 1226. DOI: 10.1016/j.jid.2018.11.036
9. Kubanov A.A., Albanova V.I., Karamova A.E., Chikin V.V., Melekhina L.Y., Bogdanova Y.V. Prevalence of hereditary epidermolysis bullosa in the Russian Federation. Vestnik Dermatologii i Venerologii. 2015; 91(3): 21–30. (In Russ., English abstract). DOI: 10.25208/0042-4609-2015-91-3-21-30
10. Tabur S., Aksoy Є.N., Korkmaz H., Ozkaya M., Aksoy N., Akarsu E. Investigation of the role of 8-OHdG and oxidative stress in papillary thyroid carcinoma. Tumour. Biol. 2015; 36(4): 2667-2674. DOI: 10.1007/s13277-014-2889-6
11. Ba X., Aguilera-Aguirre L., Rashid Q.T., Bacsi A., Radak Z., Sur S., Hosoki K., Hegde M.L., Boldogh I. The role of 8-oxoguanine DNA glycosylase-1 in infl ammation. Int. J. Mol. Sci. 2014; 15(9):16975-16997. DOI: 10.3390/ijms150916975
12. Polunina E.A. Serum level of advanced oxidation protein products and the activity of superoxide dismutase as the markers of oxidative stress in patients with chronic heart failure. Kuban Scientifi c Medical Bulletin. 2019; 26(1): 122-130. (In Russ., English abstract). DOI: 10.25207/1608-6228-2019-26-1-122-130
13. Lukina M.V., Kuznetsova A.A., Kuznetsov N.A, Fedorova O.S. The kinetic analysis of recognition of the damaged nucleotides by mutant forms of the 8-oxoguanine DNA glycosylase hOGG1. Russian Journal of Bioorganic Chemistry. 2017; 43(1). DOI: 10.7868/S0132342317010055
14. Popov A.V., Yudkina A.V., Vorobjev Y.N., Zharkov D.O. Catalytically competent conformation of the active site of human 8-oxoguanine-DNA-glycosylase. Biochemistry (Moscow). 2020; 85(2): 192-204. DOI: 10.1134/S0006297920020066
15. Stoddard S., Riggleman A., Carpenter A., Baranova A. The detection of 8-Oxo-7,8-Dihydro-2’-Deoxyguanosine in circulating cell-free DNA: a step towards longitudinal monitoring of health. Adv. Exp. Med. Biol. 2020; 1241: 125-138. DOI: 10.1007/978-3-030-41283-8_8
16. Potekaev N.N., Zhukova O.V., Porshina O.V., Chasova G.K. Clinical and epidemiological features of the congenital epidermolysis bullosa in Moscow. Klinicheskaya Dermatologiya i Venerologiya. 2017; 16(6): 83-89. (In Russ., English abstract). DOI: 10.17116/klinderma201716683-89
17. Ba X., Boldogh I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modifi ed base lesions. Redox. Biol. 2018; 14: 669-678. DOI: 10.1016/j.redox.2017.11.008
18. Fouquerel E., Lormand J., Bose A., Lee H.T., Kim G.S., Li J., Sobol R.W., Freudenthal B.D., Myong S., Opresko P.L. Oxidative guanine base damage regulates human telomerase activity. Nat. Struct. Mol. Biol. 2016; 23(12): 1092-1100. DOI: 10.1038/nsmb.3319
Review
For citations:
Pavlyuchenko I.I., Gusaruk L.R., Tekutskaya E.E., Rubtsova I.T. Prevalence and molecular genetic features of epidermolysis bullosa in Krasnodar Krai. Kuban Scientific Medical Bulletin. 2020;27(5):88-99. (In Russ.) https://doi.org/10.25207/1608-6228-2020-27-5-88-99