Preview

Kuban Scientific Medical Bulletin

Advanced search

Predictors of arterial hypertension in children (A Review)

https://doi.org/10.25207/1608-6228-2020-27-6-123-135

Abstract

Background. Arterial hypertension poses a relevant problem and roots in early childhood. Today, arterial hypertension in children and adolescents is considered rather common and should be controlled and prevented as early as possible, which warrants further research into its pathogenesis and effective correction.

Objectives. To generalize current knowledge of microbiota in the development of arterial hypertension in children.

Methods. National and foreign published sources were surveyed in the eLibrary, Web of Science and PubMed databases. Keyword queries were: gut microbiota, arterial hypertension [артериальная гипертензия], children [дети], chronic systemic inflammation [хроническое системное воспаление], probiotics [пробиотики]. All sources have a publication depth of 7 years. The study used content analysis and descriptive analytics.

Results. Arterial hypertension remains a problem of high economic, medical and social importance as a major cause of brain disorders and coronary heart disease. Hypertension is shown to emerge early in childhood and adolescence during the regulatory network formation. Manifold evidence is accumulated on the involvement of human microbiota in pathogenesis of arterial hypertension. Infant microbiota is more unstable than in adults. Its taxonomic profile is viewed important for sustaining health, with imbalances in intestinal microbiota potentially entailing serious consequences. The impact of microbiota on chronic systemic inflammation, lipid metabolism, development and progression of atherosclerosis has been reported. Certain bacterial strains are known to exert benign effect on arterial hypertension and blood cholesterol. Selected mechanisms of the microbiota-mediated regulation of blood pressure have been identified. Improved methods for microbial community correction are being developed and include diet, antibiotic, prebiotic and probiotic regimens, faecal microbiota transplant.

Conclusion. Current achievements promise the emergence of novel approaches for arterial hypertension control early in childhood to avoid incorrigible adult complications.

About the Authors

A. V. Burlutskaya
Kuban State Medical University
Russian Federation

Alla V. Burlutskaya — Dr. Sci. (Med.), Assoc. Prof., Head of the Chair of Paediatrics No. 2

Mitrofanа Sedina str., 4, Krasnodar, 350063



O. G. Korobkina
Kuban State Medical University
Russian Federation

Olga G. Korobkina — Clinical Resident (2nd year), Chair of Paediatrics No. 2

Mitrofanа Sedina str., 4, Krasnodar, 350063
tel.: +7 (918) 988-71-98 



References

1. Agapitov L.I., Cherepnina I.V. Diagnostics and treatment of arterial hypertension in children and adolescents, overview of new clinical guidelines of the American Academy of Pediatrics. Russian Bulletin of Perinatology and Pediatrics. 2019; 64(4): 114–127 (In Russ., English abstract). DOI: 10.21508/1027-4065-2019-64-4-114-127

2. Skinner A.C., Perrin E.M., Moss L.A., Skelton J.A. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N. Engl. J. Med. 2015; 373(14): 1307–1317. DOI: 10.1056/NEJMoa1502821

3. Nikolaeva I.V., Tsaregorodtsev A.D., Shaikhieva G.S. Formation of the intestinal microbiota of children and the factors that influence this process. Russian Bulletin of Perinatology and Pediatrics. 2018; 63(3): 1318 (In Russ., English abstract). DOI: 10.21508/10274065-2018-63-3-13-18

4. Kharitonova L.A., Grigoriev K.I., Borzakova S.N. Human microbiote: how a new scientifi c paradigm changes medical practice. Experimental and Clinical Gastroenterology. 2019; 161(1): 55–63 (In Russ., English abstract). DOI: 10.31146/1682-8658-ecg-161-1-55-63

5. Makarova S.G., Namazova-Baranova L.S., Ereshko O.A., Yasakov D.S., Sadchikov P.E. Intestinal microbiota and allergy. Probiotics and prebiotics in prevention and treatment of allergic diseases. Pediatric Pharmacology. 2019; 16(1): 7–18 (In Russ., English abstract). DOI: 10.15690/pf.v16i1.1999

6. Hohlacheva N.A., Glazyrina N.N., Lukashevich A.P., Vahrushev J.M., Kosareva T.S. The role of intestinal microflora in the development of cholelithiasis (literature review). The Russian Archives of Internal Medicine. 2020; 10(1): 31–37 (In Russ., English abstract). DOI: 10.20514/2226-6704-2020-10-1-31-37

7. Khavkin A.I., Komarova O.N. Products of metabolism of the intestinal microflora: can we use the selective correction? Current Pediatrics. 2015; 14(2): 212–218 (In Russ., English abstract). DOI: 10.15690/vsp.v14i2.1289

8. Sampson T.R., Mazmanian S.K. Control of brain development, function, and behavior by the microbiome. Cell Host. Microbe. 2015; 17(5): 565–576. DOI: 10.1016/j.chom.2015.04.011

9. Kardymon O.L., Kudryavtseva A.V. Molecular genetic methods for intestinal microbiome investigation. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016; 26(4): 4–13 (In Russ., English abstract). DOI: 10.22416/1382-4376-2016-26-4-4-13

10. Makarova S.G., Broeva M.I. Different Factors Influencing Early Stages of Intestine Microbiota Formation. Pediatric Pharmacology. 2016; 13(3): 270–282 (In Russ., English abstract). DOI: 10.15690/pf.v13i3.1577

11. Payne M.S., Bayatibojakhi S. Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front. Immunol. 2014; 5: 595. DOI: 10.3389/fimmu.2014.00595

12. Hansen R., Scott K.P., Khan S., Martin J.C., Berry S.H., Stevenson M., et al. First-Pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota. PLoS One. 2015; 10(7): e0133320. DOI: 10.1371/journal.pone.0133320

13. Hesla H.M., Stenius F., Jäderlund L., Nelson R., Engstrand L., Alm J., Dicksved J. Impact of lifestyle on the gut microbiota of healthy infants and their mothers the ALADDIN birth cohort. FEMS Microbiol. Ecol. 2014; 90(3): 791–801. DOI: 10.1111/1574-6941.12434

14. Lee E., Kim B.J., Kang M.J., Choi K.Y., Cho H.J., Kim Y., et al. Dynamics of gut microbiota according to the delivery mode in healthy korean infants. Allergy Asthma Immunol. Res. 2016; 8(5): 471–477. DOI: 10.4168/aair.2016.8.5.471

15. Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016; 16(1): 86. DOI: 10.1186/s12876-016-0498-0

16. Aitbaev K.A., Murkamilov I.E. Intestinal microbiota: its role in pathogenesis of arterial hypertension. Klinicheskaya Meditsina. 2017; 95(2): 123–126 (In Russ., English abstract). DOI: 10.18821/0023-2149-201795-2-123-126

17. Kashtanova D.A., Tkacheva O.N., Boytsov S.A. Gut microbiota and cardiovascular risk factors. Part IV. Arterial hypertension, smoking and the gut microbiota. Cardiovascular Therapy and Prevention. 2016; 15(1): 69–72 (In Russ., English abstract). DOI: 10.15829/1728-8800-2016-1-69-72

18. Andrade-Oliveira V., Amano M.T., Correa-Costa M., Castoldi A., Felizardo R.J., Almeida D.C., et al. Gut Bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 2015; 26(8): 1877–1888. DOI: 10.1681/ASN.2014030288

19. Yang T., Santisteban M.M., Rodriguez V., Li E., Ahmari N., Carvajal J.M., et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015; 65(6): 1331–1340. DOI: 10.1161/HYPERTENSIONAHA.115.05315

20. Drapkina O.M., Shirobokikh O.E. Role of gut microbiota in the pathogenesis of cardiovascular diseases and metabolic syndrome. Rational Pharmacotherapy in Cardiology. 2018; 14(4): 567–574 (In Russ., English abstract). DOI: 10.20996/1819-6446-2018-14-4-567-574

21. Li J., Zhao F., Wang Y., Chen J., Tao J., Tian G., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017; 5(1): 14. DOI: 10.1186/s40168-016-0222-x

22. Collins H.L., Drazul-Schrader D., Sulpizio A.C., Koster P.D., Williamson Y., Adelman S.J., et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(–/–) transgenic mice expressing CETP. Atherosclerosis. 2016; 244: 29–37. DOI: 10.1016/j.atherosclerosis.2015.10.108

23. Mueller D.M., Allenspach M., Othman A., Saely C.H., Muendlein A., Vonbank A., et al. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis. 2015; 243(2): 638–644. DOI: 10.1016/j.atherosclerosis.2015.10.091

24. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., et al. Gut Microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016; 165(1): 111–124. DOI: 10.1016/j.cell.2016.02.011

25. Al-Obaide M.A.I., Singh R., Datta P., Rewers-Felkins K.A., Salguero M.V., Al-Obaidi I., et al. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J. Clin. Med. 2017; 6(9): 86. DOI: 10.3390/jcm6090086

26. Li J., Lin S., Vanhoutte P.M., Woo C.W., Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe–/– Mice. Circulation. 2016; 133(24): 24342446. DOI: 10.1161/CIRCULATIONAHA.115.019645

27. Lobzin Y.V., Avdeeva M.V., Sidorenko S.V., Luchkevich V.S. Imbalance in the intestinal microbiota as a risk factor of cardiometabolic diseases. Journal Infectology. 2014; 6(4): 5–12 (In Russ., English abstract). DOI: 10.22625/2072-6732-2014-6-4-5-12

28. Sun G., Yin Z., Liu N., Bian X., Yu R., Su X., et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem. Biophys. Res. Commun. 2017; 493(2): 964–970. DOI: 10.1016/j.bbrc.2017.09.108

29. Chen K., Zheng X., Feng M., Li D., Zhang H. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front. Physiol. 2017; 8: 139. DOI: 10.3389/fphys.2017.00139

30. Ivashkin V.T., Kashukh Ye.A. Impact of L-carnitine and phosphatidylcholine containing products on the proatherogenic metabolite TMAO production and gut microbiome changes in patients with coronary artery disease. Voprosy Pitaniia [Problems of Nutrition]. 2019; 88(4): 25–33 (In Russ., English abstract). DOI: 10.24411/0042-8833-2019-10038

31. Boutagy N.E., Neilson A.P., Osterberg K.L., Smithson A.T., Englund T.R., Davy B.M., et al. Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet. Obesity (Silver Spring). 2015; 23(12): 2357–2363. DOI: 10.1002/oby.21212

32. Malinowska A.M., Szwengiel A., Chmurzynska A. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations. Int. J. Food Sci. Nutr. 2017; 68(4): 488–495. DOI: 10.1080/09637486.2016.1256379

33. Drapkina O.M., Korneeva O.N. Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora. Terapevticheskii Arkhiv. 2016; 88(9): 135–142 (In Russ., English abstract). DOI: 10.17116/terarkh2016889135-142

34. Zeng W., Shen J., Bo T., Peng L., Xu H., Nasser M.I., et al. Cutting edge: Probiotics and fecal microbiota transplantation in immunomodulation. J. Immunol. Res. 2019; 2019: 1603758. DOI: 10.1155/2019/1603758

35. Leshem A., Horesh N., Elinav E. Fecal microbial transplantation and its potential application in cardiometabolic syndrome. Front. Immunol. 2019; 10: 1341. DOI: 10.3389/fimmu.2019.01341

36. Sanchez-Rodriguez E., Egea-Zorrilla A., Plaza-Díaz J., Aragón-Vela J., Muñoz-Quezada S., Tercedor-Sánchez L., Abadia-Molina F. The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients. 2020; 12(3): 605. DOI: 10.3390/nu12030605

37. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H, Ballantyne C., et al. CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377(12): 1119–1131. DOI: 10.1056/NEJMoa1707914

38. Sugahara H., Odamaki T., Fukuda S., Kato T., Xiao J.Z., Abe F., et al. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 2015; 5: 13548. DOI: 10.1038/srep13548


Review

For citations:


Burlutskaya A.V., Korobkina O.G. Predictors of arterial hypertension in children (A Review). Kuban Scientific Medical Bulletin. 2020;27(6):123-135. (In Russ.) https://doi.org/10.25207/1608-6228-2020-27-6-123-135

Views: 642


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)