Composite bond strength improvement with thermal vibration: an experimental non-randomised study
https://doi.org/10.25207/1608-6228-2021-28-4-53-71
Abstract
Background. Secondary caries formation is a relevant issue due to poor long-term quality of composite fillings, with inherent subsequent chipping and cracking of the material. We developed a method to improve physical, mechanical and chemical properties of available composites based on thermal vibration imposed on unpolymerised composite in the formed tooth cavity directly prior to polymerisation.
Objectives. Effect assessment of thermal vibration exposure on bond strength in composite restorative polymer matrix in various composite brands.
Methods. The study used synchronous thermal analysis, including differential scanning calorimetry and thermogravimetry, to estimate and register thermal effects of physical and chemical processes within a temperature programme, as well as determine gaseous release, air contact and decomposition-related sample mass variation, thermal stability, reaction kinetics, polymer and inorganic filler component chemical composition, humidity and softening degree. The study covered 90 specimens 30 mg each prepared of three different composites.
Results. Synchronous thermal analysis revealed a statistically significant increase in polymer matrix bond strength in the composites Estelite Sigma Quick (Tokuyama Dental), Filtek Bulk Fill Posterior Restorative (3M Espe) and DentLight (VladMiVa) after thermal vibration exposure vs. classical polymerisation of same composites (p < 0.0001). The bond strength increased by 17.00, 22.51 and 11.31%, respectively.
Conclusion. The developed exposure method for altering the composite filling physical and chemical properties has been shown advantageous in a laboratory setting. Thermal vibration-pretreated composite fillings had a higher polymer matrix bond strength vs. same composites polymerised under standard conditions.
The pretreatment improves composite filling quality via directly affecting the material physical and mechanical properties of hardness and bending strength.
Keywords
About the Authors
A. A. GushchinRussian Federation
Alexander A. Gushchin — Postgraduate Student, Chair of Therapeutic Dentistry
Mitrofana Sedina str., 4, Krasnodar, 350063
Imeni Klary Luchko blvd., 4, r. 213, 350089, Krasnodar
tel.: +7 (928) 333-22-73
SPIN 2154-7861
A. A. Adamchik
Russian Federation
Anatolii A. Adamchik — Dr. Sci. (Med.), Assoc. Prof., Head of the Chair of Therapeutic Dentistry
Mitrofana Sedina str., 4, Krasnodar, 350063
SPIN 1173-3559
V. Ya. Zobenko
Russian Federation
Vladimir Ya. Zobenko — Cand. Sci. (Tech.), Assoc. Prof., Chair of Public Health, Healthcare and History of Medicine
Mitrofana Sedina str., 4, Krasnodar, 350063
SPIN 2791-5639
V. N. Samhaev
Russian Federation
Vladislav N. Samhaev — Chief Physician
Gorkogo str., 14, Elista, 358000
References
1. Wright M.C. Bulk and Microscale Composition Analysis. In: Miller B.A., Shipley R.J., Parrington R.J., Dennies D.P. editors. Failure Analysis and Prevention. ASM International; 2021. 85–91. DOI: 10.31399/asm.hb.v11.a0006759
2. Sevbitov A.V., Dan’shina S.D., Kuznetsova M.Yu., Platonova V.V., Borisov V.V. Icon as a method of choice for injectable treatment of initial caries in patients wiht ossifying progressive fibrodysplasia: a clinical case. Russian Journal of Dentistry. 2019; 23(6): 280–283 (In Russ., English abstract). DOI: 10.18821/1728-2802-2019-23-6-280-283
3. Shumilovich B.R., Leshcheva E.A., Kharitonov D.Yu., Morozov A.N., Saneev A.V. Сhange of the microstructure of enamel and dentin under the influence of the rotary tool in the treatment of caries (in vitro study). Russian Journal of Dentistry. 2017; 21(2): 68–71 (In Russ., English abstract). DOI: 10.18821/1728-28022017;21(2)68-71
4. Khabadze Z.S. Laboratory substantiation of the efficiency of nanocomposite material prepolymerization heating. Endodontics Today. 2020; 18(1): 15–20 (In Russ., English abstract). DOI: 10.18821/1728-28022017;21(2)68-71
5. Adamchik A.A. Appraisal of composite’s polymerization. Kuban Scientific Medical Bulletin. 2015; 1: 7–11 (In Russ., English abstract). DOI: 10.25207/1608-6228-2015-1-7-11
6. Ebrahimi-Chaharom M.E., Safyari L., Safarvand H., Jafari-Navimipour E., Alizadeh-Oskoee P., Ajami A.A., Abed-Kahnamouei M., Bahari M. The effect of pre-heating on monomer elution from bulk-fill resin composites. J. Clin. Exp. Dent. 2020; 12(9): e813– e820. DOI: 10.4317/jced.56989
7. Ebrahimi Chaharom M.E., Bahari M., Safyari L., Safarvand H., Shafaei H., Jafari Navimipour E., Alizadeh Oskoee P., Ajami A.A., Abed Kahnamouei M. Effect of preheating on the cytotoxicity of bulk-fill composite resins. J Dent Res Dent. Clin. Dent. Prospects. 2020; 14(1): 19–25. DOI: 10.34172/joddd.2020.003
8. Lopes L.C.P., Terada R.S.S., Tsuzuki F.M., Giannini M., Hirata R. Heating and preheating of dental restorative materials-a systematic review. Clin. Oral. Investig. 2020; 24(12): 4225–4235. DOI: 10.1007/s00784-020-03637-2
9. Urcuyo Alvarado M.S., Escobar García D.M., Pozos Guillén A.J., Flores Arriaga J.C., Romo Ramírez G.F., Ortiz Magdaleno M. Evaluation of the Bond Strength and Marginal Seal of Indirect Restorations of Composites Bonded with Preheating Resin. Eur. J. Dent. 2020; 14(4): 644–650. DOI: 10.1055/s-0040-1716630
10. Xue J., Yang B.N. Effect of preheating on the properties of resin composite. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019; 37(6): 571–576. DOI: 10.7518/hxkq.2019.06.001
11. Coelho N.F., Barbon F.J., Machado R.G., Boscato N., Moraes R.R. Response of composite resins to preheating and the resulting strengthening of luted feldspar ceramic. Dent. Mater. 2019; 35(10): 1430–1438. DOI: 10.1016/j.dental.2019.07.021
12. Khabadze Z., Kulikova A., Abdulkerimova S., Bakaev Y., Bakaev Y., Todua D., Mordanov O., Adzhieva A., Davreshyan G., Solimanov Sh., Nazhmudinov Sh. The substantiation of the pre-polymerization heating efficiency of the dental nanocomposite material. Pesqui Bras. Odontopediatria Clín. Integr. 2020; 20:e0030. DOI: 10.1590/pboci.2020.1399
13. Darabi F., Tayefeh-Davalloo R., Tavangar S.M., Naser-Alavi F., Boorboo-Shirazi M. The effect of composite resin preheating on marginal adaptation of class II restorations. J. Clin. Exp. Dent. 2020; 12(7): e682–e687. DOI: 10.4317/jced.56625
14. Tauböck T.T., Tarle Z., Marovic D., Attin T. Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. J. Dent. 2015; 43(11): 1358–1364. DOI: 10.1016/j.jdent.2015.07.014
15. Nilsen B.W., Mouhat M., Haukland T., Örtengren U.T., Mercer J.B. Heat Development in the Pulp Chamber During Curing Process of Resin-Based Composite Using Multi-Wave LED Light Curing Unit. Clin. Cosmet. Investig. Dent. 2020; 12: 271–280. DOI: 10.2147/CCIDE.S257450
16. Dionysopoulos D., Papadopoulos C., Koliniotou-Koumpia E. Effect of temperature, curing time, and filler composition on surface microhardness of composite resins. J. Conserv. Dent. 2015; 18(2): 114– 118. DOI: 10.4103/0972-0707.153071
17. Lempel E., Őri Z., Szalma J., Lovász B.V., Kiss A., Tóth Á., Kunsági-Máté S. Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fiber reinforced and polyacid-modified resin composites. Dent. Mater. 2019; 35(2): 217–228. DOI: 10.1016/j.dental.2018.11.017
18. Abral H., Putra G.J., Asrofi M., Park J.W., Kim H.J. Effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties. Ultrason. Sonochem. 2018; 40(PtA): 697–702. DOI: 10.1016/j.ultsonch.2017.08.019
19. Kim H.J., Choi H.J., Kim K.Y., Kim K.M. Effect of Heat and Sonic Vibration on Penetration of a Flowable Resin Composite Used as a Pit and Fissure Sealant. J. Clin. Pediatr. Dent. 2020; 44(1): 41–46. DOI: 10.17796/1053-4625-44.1.7
20. Vyazovkin S. Isoconversional Kinetics of Polymers: The Decade Past. Macromol. Rapid. Commun. 2017; 38(3). DOI: 10.1002/marc.201600615
21. Thermogravimetric Analysis. In: Materials Characterization. ASM International; 2019. 312–318. DOI: 10.31399/asm.hb.v10.a0006673
22. Differential Scanning Calorimetry [1]. In: Materials Characterization. ASM International; 2019. P. 305–311. DOI: 10.31399/asm.hb.v10.a0006672
23. Münchow E.A., Zanchi C.H., Ogliari F.A., Silva M.G., de Oliveira I.R., Piva E. Replacing HEMA with alternative dimethacrylates in dental adhesive systems: evaluation of polymerization kinetics and physicochemical properties. J. Adhes. Dent. 2014; 16(3): 221–228. DOI: 10.3290/j.jad.a31811
24. Zhang A, Li Z. Analysis of the equivalent thermal conductivity of nanopaper/polymer composite materials. AIP Conference Proceedings. 2019; 2106(1): 020014. DOI: 10.1063/1.5109337
25. Yadav R., Kumar M. Dental restorative composite materials: A review. J. Oral. Biosci. 2019; 61(2): 78–83. DOI: 10.1016/j.job.2019.04.001
26. Rodrigues M.C., Rolim W.R., Viana M.M., Souza T.R., Gonçalves F., Tanaka C.J., Bueno-Silva B., Seabra A.B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J. Dent. 2020; 96: 103327. DOI: 10.1016/j.jdent.2020.103327
27. Safaei M., Taran M., Imani M.M.. Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019; 101: 323–329. DOI: 10.1016/j.msec.2019.03.108
Supplementary files
Review
For citations:
Gushchin A.A., Adamchik A.A., Zobenko V.Ya., Samhaev V.N. Composite bond strength improvement with thermal vibration: an experimental non-randomised study. Kuban Scientific Medical Bulletin. 2021;28(4):53-71. (In Russ.) https://doi.org/10.25207/1608-6228-2021-28-4-53-71