Preview

Kuban Scientific Medical Bulletin

Advanced search

Finite element method in computer simulation for improved patient care in dentistry: A systematic review

https://doi.org/10.25207/1608-6228-2021-28-5-98-116

Abstract

Background. The fi nite element method is gaining acknowledgment in Russia and other developed countries in a range of areas, including medicine. In stomatology, the method is applicable in research and implication of novel treatment and relevant material design.

Objective. The review highlights usage of the fi nite element method in computer simulation to improve quality of patient dental care.

Methods. The review analyses the state-of-the-art in current scientific literature. Records were mined in the PubMed and e-Library databases at a depth of 10 years, with selective inclusion of earlier articles. The query keywords were: finite element method [метод конечных элементов], computer simulation [компьютерная симуляция], quality of life improvement [повышение качества жизни], oral diseases [заболевания полости рта], dental treatment [стоматологическое лечение].

Results. The review systematically surveys 56 scientific papers in the focus area for current state-of-the-art in the finite element analysis-empowered simulation in dentistry. The method’s rising employment is conditioned by its flexibility, 3D-object modelling simplicity and the rapid acquisition of reliable high-quality output. Its undoubted paramount advantage in dentistry is an explicit software visualisation of reliable results through co-modelling of multiple oral parameters.

Conclusion. The growing acquaintance, mastering and use of this technique among researchers around the globe will give impetus to novel diagnosis and treatment, as well as relevant management algorithms in particular patient categories to enable personalisation of even mass dental check-up. This will reduce the number of visits, peri- and posttreatment error and complication rates for the improved patient’s quality of life and social rehabilitation.

About the Authors

Denis Yu. Dyachenko
Volgograd State Medical University
Russian Federation

Denis Yu. Dyachenko – Research Assistant, Chair of Dentistry, Institute of Continuing Education in Medicine and Pharmacy

Pavshykh Bortsov sq., 1, Volgograd, 400131



Svetlana V. Dyachenko
Volgograd State Medical University
Russian Federation

Svetlana V. Dyachenko – Research Assistant, Chair of Dentistry, Institute of Continuing Education in Medicine and Pharmacy

Pavshykh Bortsov sq., 1, Volgograd, 400131



References

1. Abakarov S.I. Osnovy anatomii, okklyuzii i artikulyatsii v stomatologii [Fundamentals of Anatomy, Occlusion and Articulation in Dentistry]. Moscow: GEOTAR-Media; 2019. 528 p. (In Russ.). DOI: 10.33029/9704-5356-8-2019-OKK-1-528

2. Mukhartova Y.V., Mongush O.O., Bogolyubov A.N. Application of the fi nite-element method for solving a spectral problem in a waveguide with piecewise constant bi-isotropic filling. Journal of Communications Technology and Electronics. 2017; 62(1):1–13. DOI: 10.1134/s1064226917010120

3. Pinchuk P.V., Krupin K.N., Petrov V.V., Leonov S.V. Specifi c fractures of the diaphysis of the femur formed by a traumatic multicomponent bullet shot charge from a smoothbore carbine “Saiga 12k” at a distance in focus, visualization and theoretical study of the fragment formation mechanism about them. Scientifi c Visualization. 2018; 10(2): 15–28 (In Russ., English abstract). DOI: 10.26583/sv.10.2.02

4. Fudin N.A., Khadartsev A.A. Effects of isometric loads in healthy persons, athletes at different pathology (literature review). Journal Of New Medical Technologies, eEdition. 2019; 6: 173–184 (In Russ., English abstract). DOI: 10.24411/2075-4094-2019-16587

5. Apresyan S.V., Suonio V.K., Stepanov A.G., Kovalskaya T.V. Evaluation of functional potential of CAD-programs in integrated digital planning of dental treatment. Russian Journal of Dentistry. 2020; 24(3): 131–134 (In Russ., English abstract). DOI: 10.17816/1728-2802-2020-24-3-131-134

6. Jin B., Hu Y.G., Han L. Progress in fi nite element analysis of meniscus. Zhongguo Gu Shang. 2019; 32(5): 485–488 (Chinese). DOI: 10.3969/j.issn.1003-0034.2019.05.019

7. Ostapienko B.I., Lopez D., Komarova S.V. Mathematical modeling of calcium phosphate precipitation in biologically relevant systems: scoping review. Biomech.Model. Mechanobiol. 2019; 18(2): 277–289. DOI: 10.1007/s10237-018-1087-7

8. Feng Y., Kong W.D., Cen W.J., Zhou X.Z., Zhang W., Li Q.T., Guo H.Y., Yu J.W. Finite element analysis of the effect of power arm locations on tooth movement in extraction space closure with miniscrew anchorage in customized lingual orthodontic treatment. Am. J. Orthod. Dentofacial. Orthop. 2019; 156(2): 210–219. DOI: 10.1016/j.ajodo.2018.08.025

9. Tretto P.H.W., Dos Santos M.B.F, Spazzin A.O., Pereira G.K.R, Bacchi A. Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy-3D non-linear finite element analysis. Comput. Methods Biomech. Biomed. Engin. 2020; 23(8): 372–383. DOI: 10.1080/10255842.2020.1731481

10. Skaliukh A.S., Oganesyan P.A., Solovieva A.A., Gerasimenko T.E. Finite Element Modeling of Surgical Scalpel with Piezoelectric Actuator. Mechanical Engineering and Computer Science. 2018; 12: 15–23 (In Russ., English abstract). DOI: 10.24108/1218.0001442

11. Shahriari S., Parandakh A., Khani M.M., Azadikhah N., Naraghi P., Aeinevand M., Nikkhoo M., Khojasteh A. The Effect of Mandibular Flexure on Stress Distribution in the All-on-4 Treated Edentulous Mandible: A Comparative Finite-Element Study Based on Mechanostat Theory. J. Long. Term. Eff. Med. Implants. 2019; 29(1): 79–86. DOI: 10.1615/JLongTermEffMed-Implants.2019030866

12. Muraev A.A., Ivanov S.Y., Gazhva Y.V., Muhametshin R.F., Ryabova V.M., Mrue A.H., Korotkova N.L. Mathematical rationale and results of clinical use of IRIS short implants. Stomatologiia. 2018; 97(5): 65–70 (In Russ., English abstract). DOI: 10.17116/stomat20189705165

13. Demirel A., Bezgin T., Sarı Ş. Effects of Root Maturation and Thickness Variation in Coronal Mineral Trioxide Aggregate Plugs Under Traumatic Load on Stress Distribution in Regenerative Endodontic Procedures: A3-dimensional Finite Element Analysis Study. J. Endod. 2021; 47(3): 492–499.e4. DOI: 10.1016/j.joen.2020.11.006

14. Pammer D. Evaluation of postoperative dental implant primary stability using 3D finite element analysis. Comput. Methods. Biomech. Biomed. Engin. 2019; 22(3): 280–287. DOI: 10.1080/10255842.2018.1552682

15. Arzhantsev A.A. Rentgenologiya v stomatologii: Rukovodstvo dlya vrachei [Radiology in Dentistry: A Guide for Physicians]. Moscow: GEOTAR-Media; 2021. 304 p. (In Russ.). DOI: 10.33029/9704-6197-6-XRD-2021-1-304

16. Jiang T., Wu R.Y., Wang J.K., Wang H.H., Tang G.H. Clear aligners for maxillary anterior en masse retraction: a 3D finite element study. Sci. Rep. 2020; 10(1): 10156. DOI: 10.1038/s41598-020-67273-2

17. Eom J.W., Lim Y.J., Kim M.J., Kwon H.B. Three-dimensional finite element analysis of implant-assisted removable partial dentures. J. Prosthet. Dent. 2017; 117(6): 735–742. DOI: 10.1016/j.prosdent.2016.09.021

18. Li X., Kang T., Zhan D., Xie J., Guo L. Biomechanical behavior of endocrowns vs fiber post-core-crown VS cast post-core-crown for the restoration of maxillary central incisors with 1 mm and 2 mm ferrule height: A 3D static linear finite element analysis. Medicine (Baltimore). 2020; 99(43): e22648. DOI: 10.1097/MD.0000000000022648

19. Kumar A., Shitole P., Ghosh R., Kumar R., Gupta A. Experimental and numerical comparisons between finite element method, element-free Galerkin method, and extended finite element method predicted stress intensity factor and energy release rate of cortical bone considering anisotropic bone modelling. Proc. Inst. Mech. Eng. H. 2019; 233(8): 823–838. DOI: 10.1177/0954411919853918

20. Tolmacheva Y.P., Chmatkova A.V., Zaides S.A. Using the fi nite-element metod for visualization of the stressstrain state of fish. Scientifi c Visualization. 2019; 11(2): 114–125 (In Russ., English abstract). DOI: 10.26583/sv.11.2.09

21. Rodrigues M.P., Soares P.B.F., Gomes M.A.B., Pereira R.A., Tantbirojn D., Versluis A., Soares C.J. Direct resin composite restoration of endodontically-treated permanent molars in adolescents: bite force and patient-specific finite element analysis. J. Appl. Oral. Sci. 2020; 28: e20190544. DOI: 10.1590/1678-7757-2019-0544

22. Mozayek R.S., Allaf M., Dayoub S. Porcelain sectional veneers, an ultra-conservative technique for diastema closure (three-dimensional fi nite element stress analysis). Dent. Med. Probl. 2019; 56(2): 179–183. DOI: 10.17219/dmp/104602

23. Tekin S., Değer Y., Demirci F. Evaluation of the use of PEEK material in implant-supported fixed restorations by finite element analysis. Niger. J. Clin. Pract. 2019; 22(9): 1252–1258. DOI: 10.4103/njcp.njcp_144_19

24. Sirandoni D., Leal E., Weber B., Noritomi P.Y., Fuentes R., Borie E. Effect of Different Framework Materials in Implant-Supported Fixed Mandibular Prostheses: A Finite Element Analysis. Int. J. Oral. Maxillofac. Implants. 2019; 34(6): e107–e114. DOI: 10.11607/jomi.7255

25. David Müzel S., Bonhin E.P., Guimarães N.M., Guidi E.S. Application of the Finite Element Method in the Analysis of Composite Materials: A Review. Polymers (Basel). 2020; 12(4): 818. DOI: 10.3390/polym12040818

26. Türker N., Büyükkaplan U.S., Sadowsky S.J., Özarslan M.M. Finite Element Stress Analysis of Applied Forces to Implants and Supporting Tissues Using the “All-on-Four” Concept with Different Occlusal Schemes. J. Prosthodont. 2019; 28(2): 185–194. DOI: 10.1111/jopr.13004

27. Ozan O., Kurtulmus-Yilmaz S. Biomechanical Comparison of Different Implant Inclinations and Cantilever Lengths in All-on-4 Treatment Concept by Three-Dimensional Finite Element Analysis. Int. J. Oral. Maxillofac. Implants. 2018; 33(1): 64–71. DOI: 10.11607/jomi.6201

28. Dubova L.V., Zolkina Yu.S., Tagiltsev D.I., Majidova E.R. Study of the distribution of internal stresses in prototype dentures supported by isoelastic dental implants and teeth. Parodontologiya. 2019; 24(3): 207–211 (In Russ., English abstract). DOI: 10.33925/1683-3759-2019-24-3-207-211

29. Wu A.Y., Hsu J.T., Fuh L.J., Huang H.L. Biomechanical effect of implant design on four implants supporting mandibular full-arch fixed dentures: In vitro test and finite element analysis. J. Formos. Med. Assoc. 2020; 119(10): 1514–1523. DOI: 10.1016/j.jfma.2019.12.001

30. Kaleli N., Sarac D., Külünk S., Öztürk Ö. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: A three-dimensional finite element analysis study. J. Prosthet. Dent. 2018; 119(3): 437–445. DOI: 10.1016/j.prosdent.2017.03.008

31. Nitin K.S., Padmanabhan T.V., Kumar V.A., Parthasarathi N., Uma Maheswari M., Kumar S.M. A three-dimensional finite element analysis to evaluate stress distribution tooth in tooth implant-supported prosthesis with variations in non-rigid connector design and location. Indian J. Dent. Res. 2018; 29(5): 634–640. DOI: 10.4103/ijdr.IJDR_538_16

32. Suzuki M., Sueishi K., Katada H., Togo S. Finite Element Analysis of Stress in Maxillary Dentition during En-masse Retraction with Implant Anchorage. Bull Tokyo Dent. Coll. 2019; 60(1): 39–52. DOI: 10.2209/tdcpublication.2017-0055

33. Yokoi Y., Arai A., Kawamura J., Uozumi T., Usui Y., Okafuji N. Effects of Attachment of Plastic Aligner in Closing of Diastema of Maxillary Dentition by Finite Element Method. J. Healthc. Eng. 2019; 2019: 1075097. DOI: 10.1155/2019/1075097

34. Zhang S., Lü C., Li J.H., Zhu B.M., Wang W.Q. Three-dimensional fi nite element analysis of the infl uence of an abutment buffer layer on implant stress distribution. Hua Xi Kou Qiang Yi Xue Za Zhi. 2020; 38(5): 537–540. DOI: 10.7518/hxkq.2020.05.011

35. Menegaz G.L., Gomide L.C., Araújo C.A. Biomechanical evaluation of acromioclavicular joint reconstructions using a 3-dimensional model based on the finite element method. Clin. Biomech. (Bristol, Avon). 2019; 70: 170–176. DOI: 10.1016/j.clinbiomech.2019.09.002

36. Parunov V.A., Lebedenko I.Yu., Druzhinin A.A., Yakovchuk A.Yu., Morokov E.A. Determination of minimum permissible parameters of metal-ceramic bridges dentures from a new russian alloy based on palladium Palladent UNI by mathematical modeling. Russian Journal of Dentistry. 2018; 22(2): 76–78 (In Russ., English abstract). DOI: 10.18821/1728-2802-2018-22-1-76-78

37. Astashina N.B., Rogozhnikova E.P., Nikitin V.N., Karpinskaya Yu.V. Integration of modern experimental and clinical methods for assessing tooth mobility to optimize approaches orthopedic dental treatment of periodontitis. Ural Medical Journal. 2020; 9(192); 66–71 (In Russ.). DOI: 10.25694/URMJ.2020.09.14

38. Kirzioglu Z., Ceyhan D., Sengul F., Altun A.C. Three-dimensional finite element analysis of the composite and compomer onlays in primary molars. Comput. Methods Biomech. Biomed. Engin. 2019; 22(10): 936–941. DOI: 10.1080/10255842.2019.1604951

39. Sayyedi A., Rashidpour M., Fayyaz A., Ahmadian N., Dehghan M., Faghani F., Fasihg P. Comparison of Stress Distribution in Alveolar Bone with Different Implant Diameters and Vertical Cantilever Length via the Finite Element Method. J. Long. Term. Eff. Med. Implants. 2019; 29(1): 37–43. DOI: 10.1615/JLongTermEffMedImplants.2019030030

40. Liu Z.Y., Zhao L., Yang L.Y., Gao X. Three-dimensional finite element analysis of different endodontic access methods and full crown restoration in the maxillary central incisor]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019; 37(6): 642–647. DOI: 10.7518/hxkq.2019.06.013

41. Wang G., Zhang S., Bian C., Kong H. Verifi cation of finite element analysis of fixed partial denture with in vitro electronic strain measurement. J. Prosthodont. Res. 2016; 60(1): 29–35. DOI: 10.1016/j.jpor.2015.08.003

42. Kim J., Dhital S., Zhivago P., Kaizer M.R., Zhang Y. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns. J. Mech. Behav. Biomed. Mater. 2018; 82: 202–209. DOI: 10.1016/j.jmbbm.2018.03.020

43. Malde O., Libby J., Moazen M. An Overview of Modelling Craniosynostosis Using the Finite Element Method. Mol. Syndromol. 2019; 10(1–2): 74–82. DOI: 10.1159/000490833

44. Cortona A., Rossini G., Parrini S., Deregibus A., Castrofl orio T. Clear aligner orthodontic therapy of rotated mandibular round-shaped teeth: A fi nite element study. Angle. Orthod. 2020; 90(2): 247–254. DOI: 10.2319/020719-86.1

45. Wang M.H., Ge Z.L., Tian L., Li P.R., Che Y.Q. Effect of three types of rapid maxillary expansion: a three-dimensional finite element study. Zhonghua Kou Qiang Yi Xue Za Zhi. 2017; 52(11): 678–683. DOI: 10.3760/cma.j.issn.1002-0098.2017.11.006

46. Fu H.Y., Wang F.F., Hou X.M. Construction and mechanical analysis of finite element model for bending property of controlled memory wire nickel-titanium rotary file. Beijing Da Xue Xue Bao Yi Xue Ban. 2019; 51(1): 131–135. DOI: 10.19723/j.issn.1671-167X.2019.01.023

47. Phellan R., Hachem B., Clin J., Mac-Thiong J.M., Duong L. Real-time biomechanics using the finite element method and machine learning: Review and perspective. Med. Phys. 2021; 48(1): 7–18. DOI: 10.1002/mp.14602

48. Zhang Y., Mai Z., Barani A., Bush M., Lawn B. Fracture-resistant monolithic dental crowns. Dent. Mater. 2016; 32(3): 442–449. DOI: 10.1016/j.dental.2015.12.010

49. Yates K.M., Untaroiu C.D. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing. J. Biomech. 2018; 74: 50–56. DOI: 10.1016/j.jbiomech.2018.04.016

50. Geyer M., Sotiriou E., Tamm A.R., Ruf T.F., Kreidel F., Yang Y., Emrich T., Beiras-Fernandez A., Gori T., Münzel T., Schulz E., von Bardeleben R.S. Advanced Protocol for Three-Dimensional Transesophageal Echocardiography Guidance Implementing Real-Time Multiplanar Reconstruction for Transcatheter Mitral Valve Repair by Direct Annuloplasty. J. Am. Soc. Echocardiogr. 2019; 32(10): 1359–1365. DOI: 10.1016/j.echo.2019.05.015

51. Cai Y. A three-dimensional fi nite element analysis of the effect of archwire characteristics on the self-ligating orthodontic tooth movement of the canine. Technol. Health. Care. 2019; 27(S1): 195–204. DOI: 10.3233/THC-199019

52. Huang W.M., Chen C.H., Liang S.H., Huang C.Y., Cheng S.M., Sheu C.Y., Huang C.C. Multiplanar reconstruction technique for difficult computed tomography-guided lung biopsy: Improved accuracy and safety. Thorac. Cancer. 2018; 9(10): 1333–1337. DOI: 10.1111/1759-7714.12835

53. Zhang Y., Liu Y., She Y., Liang Y., Xu F., Fang C. The Effect of Endodontic Access Cavities on Fracture Resistance of First Maxillary Molar Using the Extended Finite Element Method. J. Endod. 2019; 45(3): 316–321. DOI: 10.1016/j.joen.2018.12.006

54. Liu Z.Y., Zhao L., Yang L.Y., Gao X. Three-dimensional finite element analysis of different endodontic access methods and full crown restoration in the maxillary central incisor. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019; 37(6): 642–647. DOI: 10.7518/hxkq.2019.06.013

55. Fiorillo L., Cicciù M., D’Amico C., Mauceri R., Oteri G., Cervino G. Finite Element Method and Von Mises Investigation on Bone Response to Dynamic Stress with a Novel Conical Dental Implant Connection. Biomed. Res. Int. 2020; 2020: 2976067. DOI: 10.1155/2020/2976067

56. Xu M., Yang J., Lieberman I.H., Haddas R. Finite element method-based study of pedicle screw-bone connection in pullout test and physiological spinal loads. Med. Eng. Phys. 2019; 67: 11-21. DOI: 10.1016/j.medengphy.2019.03.004


Supplementary files

Review

For citations:


Dyachenko D.Yu., Dyachenko S.V. Finite element method in computer simulation for improved patient care in dentistry: A systematic review. Kuban Scientific Medical Bulletin. 2021;28(5):98-116. (In Russ.) https://doi.org/10.25207/1608-6228-2021-28-5-98-116

Views: 513


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)