Preview

Kuban Scientific Medical Bulletin

Advanced search

Additional ultrasound capabilities for local haemodynamically significant carotid deformity: a one-stage observational study

https://doi.org/10.25207/1608-6228-2022-29-3-30-45

Abstract

Background. Despite a wide range of studies, no consensus has been reached on the relative weight of ultrasound parameters for assessing local haemodynamically significant carotid deformations.
Objectives. To estimate a diagnostic value for an additional multiparametric ultrasound parameter for local haemodynamically significant carotid deformations.
Methods. In the first phase, 388 patients underwent an outpatient multiparametric ultrasound examination of the carotid arteries. The study involved patients of the age of 18 and older with a primary referral for carotid ultrasound by a resident physician, neurologist or cardiologist in order to rule out a carotid pathology. As a supplement to the main haemodynamic significance assessment parameters, we introduced an additional metric — the deformity coefficient – in order to diagnose carotid abnormalities. Based on the first phase results, two cohorts were selected. Cohort 1 (control) consisted of patients with no abnormalities in multiparametric carotid ultrasound. Cohort 2 consisted of patients with isolated unilateral internal carotid artery deformities at no haemodynamically significant stenosis of common and internal carotid arteries in multiparametric carotid ultrasound. In the second phase, the patients underwent transcranial duplex sonography of the middle cerebral arteries, in order to detect regional haemodynamically significant internal carotid artery deformities.
Results. Mathematical modelling of abnormal arteries produced the empirical upper deformity coefficient thresholds to distinguish acute angulation. This value is >1.41 for C-shaped and >1.34 — for S-shaped curves.
Subsequent statistical analysis revealed a clear positive correlation between angulation and the deformity coefficient at a p < 0.01 significance level. More acute angulation corresponds to higher coefficient values.
The Spearman correlation between the deformity coefficient and blood flow asymmetry values for middle cerebral artery was 0.89. This defines a significant positive correlation (higher deformity coefficient corresponds to higher blood flow asymmetry) at a p < 0.01 significance level.
Conclusion. The deformity coefficient is an additional ultrasound parameter for assessing local haemodynamically significant carotid abnormalities.

About the Authors

A. V. Pomortsev
Kuban State Medical University
Russian Federation

Aleksey V. Pomortsev — Dr. Sci. (Med.), Prof., Head of the Chair of Diagnostic Radiology and Radiation Therapy

Mitrofana Sedina str., 4, Krasnodar, 350063



K. A. Baghdasaryan
Kuban State Medical University; City Polyclinic of Gelendzhik City Resort
Russian Federation

Karapet A. Baghdasaryan — Postgraduate Student (extramural), Chair of Diagnostic Radiology and Radiation Therapy; Physician (ultrasonic diagnostics)

Mitrofana Sedina str., 4, Krasnodar, 350063

Kirova str., 20, Gelendzhik, 353475



References

1. Savina A.A., Leonov S.A., Son I.M., MihailovaIu. V., Feiginova S.I., Kudrina V.G. The main trends in primary morbidity of population in the subjects of the Russian Federation in 2008–2017. Problemi Socialnoi Gigieni, Zdravookhranenia I Istorii Meditsini. 2019; 27(2): 118–122 (In Russ., English abstract). DOI: 10.32687/0869-866X-2019-27-2-118-122

2. Savina A.A., Feyginova S.I. Dynamics in incidence of diseases of the circulatory system among adults in the Russian Federation in 2007–2019. Social aspects of population health. 2021; 67(1): 1–43 (In Russ., English abstract). DOI: 10.21045/2071-5021-2021-67-2-1

3. Vaysman D.Sh., Aleksandrova G.A., Leonov S.A., Savina A.A. The Accuracy Of Indicators And The Structure Of Causes Of Death From Diseases Of The Circulatory System In The Russian Federation In International Comparisons. Current problems of health care and medical statistics. 2019; 3: 87–102 (In Russ., English abstract). DOI: 10.24411/2312-2935-2019-10055

4. Klochihina O.A., Shprakh V.V., Stakhovskaya L.V., Polunina O.S., Polunina E.A. Indicators of stroke morbidity and mortality from stroke in the territories included in the Federal program of caring for patients with stroke. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021; 121(3-2): 22–28 (In Russ., English abstract). DOI: 10.17116/jnevro202112103222

5. Benson J.C., Brinjikji W., Messina S.A., Lanzino G., Kallmes D.F. Cervical internal carotid artery tortuosity: A morphologic analysis of patients with acute ischemic stroke. Interv. Neuroradiol. 2020; 26(2): 216–221. DOI: 10.1177/1591019919891295

6. Noh S.M., Kang H.G. Clinical significance of the internal carotid artery angle in ischemic stroke. Sci. Rep. 2019; 9(1): 4618. DOI: 10.1038/s41598-018-37783-1

7. Strecker C., Krafft A.J., Kaufhold L., Hüllebrandt M., Weber S., Ludwig U., Wolkewitz M., Hennemuth A., Hennig J., Harloff A. Carotid geometry is an independent predictor of wall thickness — a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J. Cardiovasc. Magn. Reson. 2020; 22(1): 67. DOI: 10.1186/s12968-020-00657-5

8. Aber A., Howard A., Woods H.B., Jones G., Michaels J. Impact of Carotid Artery Stenosis on Quality of Life: A Systematic Review. Patient. 2019; 12(2): 213–222. DOI: 10.1007/s40271-018-0337-1

9. Baradaran H., Demissie S., Himali J.J., Beiser A., Gupta A., Polak J.F., DeCarli C., Seshadri S., Romero J.R. The progression of carotid atherosclerosis and imaging markers of dementia. Alzheimers. Dement (NY). 2020; 6(1): e12015. DOI: 10.1002/trc2.12015

10. Kliś K.M., Krzyżewski R.M., Kwinta B.M., Stachura K., Gąsowski J.J. Tortuosity of the Internal Carotid Artery and Its Clinical Significance in the Development of Aneurysms. Clin Med. 2019; 8(2): 237. DOI: 10.3390/jcm8020237

11. Amidzic A., Tiro N. Kinking of Bilateral Internal Carotid Arteries as Cause of Cognitive Dysfunction. Med. Arch. 2020; 74(1): 58–60. DOI: 10.5455/medarh.2020.74.58-60

12. Gray V.L., Goldberg A.P., Rogers M.W., Anthony L., Terrin M.L., Guralnik J.M., Blackwelder W.C., Lam D.F.H., Sikdar S., Lal B.K. Asymptomatic carotid stenosis is associated with mobility and cognitive dysfunction and heightens falls in older adults. J. Vasc. Surg. 2020; 71(6): 1930–1937. DOI: 10.1016/j.jvs.2019.09.020

13. Van Rooij J.L.M., Takx R.A.P., Velthuis B.K., Dankbaar J.W., de Jong P.A.; DUST investigators. Coiling of the Internal Carotid Artery is Associated with Hypertension in Patients Suspected of Stroke. Clin.Neuroradiol. 2021; 31(2): 425–430. DOI: 10.1007/s00062-020-00892-4

14. Elhfnawy A.M., Volkmann J., Schliesser M., Fluri F. Symptomatic vs. Asymptomatic 20–40% Internal Carotid Artery Stenosis: Does the Plaque Size Matter? Front. Neurol. 2019; 10: 960. DOI: 10.3389/fneur.2019.00960

15. Paraskevas K.I., Nicolaides A.N., Kakkos S.K. Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) study: what have we learned from it? Ann. Transl Med. 2020; 8(19): 1271. DOI: 10.21037/atm.2020.02.156

16. Smith E.E. Clinical presentations and epidemiology of vascular dementia. Clin.Sci. (Lond). 2017; 131: 1059– 1068. DOI: 10.1042/CS20160607

17. Kazantsev A.N., Vinogradov R.A., Erofeev A.A., Kravchuk V.N., Zharova A.S., Sorokin A.A., Shmatov D.V., Bagdavadze G.Sh., Korotkikh A.V. The Problem of the Choice of Revascularization in Combined Lesion of the Coronary and Carotid Arteries. Review of Current Recommendations and Article Series. Russian Sklifosovsky Journal “Emergency Medical Care”. 2022; 11 (1): 147–157 (In Russ., English abstract). DOI: 10.23934/2223-9022-2022-11-1-147-157

18. Gorican K., Chochola M., Kocik M., Zak A. Diagnostic criteria for the determination of clinically significant internal carotid artery stenosis using duplex ultrasound. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2020; 164(3): 255–260. DOI: 10.5507/ bp.2019.029

19. Saxena A., Ng E.Y.K., Lim S.T. Imaging modalities to diagnose carotid artery stenosis: progress and prospect. Biomed. Eng. Online. 2019; 18(1): 66. DOI: 10.1186/s12938-019-0685-7

20. Brouwers J.J.W.M., Jiang J.F.Y., Feld R.T., van Doorn L.P., van Wissen R.C., van Walderveen M.A.A., Hamming J.F., Schepers A. A New Doppler-Derived Parameter to Quantify Internal Carotid Artery Stenosis: Maximal Systolic Acceleration. Ann. Vasc. Surg. 2021; S0890-5096(21)00839-6. DOI: 10.1016/j.avsg.2021.09.056.

21. Welby J.P., Kim S.T., Carr C.M., Lehman V.T., Rydberg C.H., Wald J.T., Luetmer P.H., Nasr D.M., Brinjikji W. Carotid Artery Tortuosity Is Associated with Connective Tissue Diseases. AJNR Am. J.Neuroradiol. 2019; 40(10): 1738–1743. DOI: 10.3174/ajnr.A6218

22. Dilba K., van Dam-Nolen D.H.K., Crombag G.A.J.C., van der Kolk A.G., Koudstaal P.J., Nederkoorn P.J., Hendrikse J., Kooi M.E., van der Steen A.F.W., Wentzel J.J., van der Lugt A., Bos D. Dolichoarteriopathies of the extracranial internal carotid artery: The Plaque At RISK study. Eur. J. Neurol. 2021; 28(9): 3133– 3138. DOI: 10.1111/ene.14982

23. Valvano A., Bosso G., Apuzzi V., Mercurio V., Di Simone V., Panicara V., De Luca M., Tomas C., Cammarota F., Cittadini A., Oliviero U. Long-term follow-up in high risk hypertensive patients with carotid dolicoarteriopathies. Int. Angiol. 2020; 39(1): 24–28. DOI: 10.23736/S0392-9590.19.04229-9

24. Sacco S., Totaro R., Baldassarre M., Carolei A. Morphological variations of the internal carotid artery: Prevalence, characteristics and association with cerebrovascular disease. Int J Angiol. 2007; 16(2): 59–61. DOI: 10.1055/s-0031-1278249

25. D’Andrea A., Conte M., Cavallaro M., Scarafile R., Riegler L., Cocchia R., Pezzullo E., Carbone A., Natale F., Santoro G., Caso P., Russo M.G., Bossone E., Calabrò R. Transcranial Doppler ultrasonography: from methodology to major clinical applications. World J. Cardiol. 2016; 8(7): 383–400. DOI: 10.4330/wjc.v8.i7.383

26. Blanco P., Blaivas M. Applications of transcranial color-coded sonography in the emergency department. J. Ultrasound. Med. 2017; 36(6): 1251–1266. DOI: 10.7863/ultra.16.04050]


Supplementary files

Review

For citations:


Pomortsev A.V., Baghdasaryan K.A. Additional ultrasound capabilities for local haemodynamically significant carotid deformity: a one-stage observational study. Kuban Scientific Medical Bulletin. 2022;29(3):30-45. https://doi.org/10.25207/1608-6228-2022-29-3-30-45

Views: 353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)