Preview

Kuban Scientific Medical Bulletin

Advanced search

Anodal Block in Evaluation of Nerve Conduction Changes in Anesthetized Rats: Preclinical Non-Randomized Experimental Study

https://doi.org/10.25207/1608-6228-2022-29-6-107-120

Abstract

Background. There is currently no gold standard for functional assessment of nerve regeneration. Different researchers use various methods to assess the functionality of the regenerated nerve directly and indirectly. Indirect methods have the advantage of being minimally invasive, and the benefit of direct methods is recording the signal directly in the nerve.

Objectives. To identify significant parameters of neurogram changes in the sciatic nerve in an anaesthetized rat when the anode block is applied and to evaluate neurography as a method for functional assessment of nerve regeneration.

Methods. A series of experiments was performed on 10 anaesthetized rats. A DC anode was placed on the exposed sciatic nerve, more proximal and more distal to the recording electrodes, and a common cathode in the form of a needle was introduced into one of the forelimbs. Needle nichrome electrodes were introduced into the nerve using a manipulator. An original neurogram and a neurogram against anode activation were recorded by closing the DC circuit of different voltages to block the afferent signal, efferent signal and afferent and efferent signals simultaneously.

Results. When the anodal block of different voltages was applied to the afferent signal, efferent signal, and afferent and efferent signals simultaneously in all 10 experiments, the frequency-amplitude characteristics of the neurogram changed significantly as compared to the original neurogram. The amplitude of the neurogram increased considerably, while the frequency decreased, though not so dramatically. The changes in amplitude and frequency parameters were revealed to depend on the voltage value. In most cases, this relationship was directly proportional to the amplitude and inversely proportional to the frequency.

Conclusion. Considering the nature of the dynamics of the neurogram when exposed to the anodal block, the most significant parameter of its change is the amplitude. Changes in nerve fibre composition during its regeneration after damage cause changes in afferent and efferent signals, which is likely to be displayed in the neurogram as compared to the initial state. Thus, the anodal block can be used as a model of nerve damage, and the analysis of the dynamics of neurogram parameters — as a method for functional assessment of nerve regeneration.

About the Authors

V. M. Pokrovskiy
Kuban State Medical University
Russian Federation

Vladimir M. Pokrovskiy — Dr. Sci. (Med.), Prof., Prof. of the Department of Normal Physiology of the Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.

Mitrofanа Sedina str., 4, Krasnodar, 350063



A. N. Ardelyan
Kuban State Medical University
Russian Federation

Alexandr N. Ardelyan — Cand. Sci. (Med.); Assistant of the Department of Normal Physiology of the Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.

Mitrofanа Sedina str., 4, Krasnodar, 350063



B. S. Tashu
Kuban State Medical University
Russian Federation

Bela S. Tashu — Student of the Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.

Mitrofanа Sedina str., 4, Krasnodar, 350063



N. A. Arutyunyan
Kuban State Medical University
Russian Federation

Nanar A. Arutyunyan — Assistant of the Department of Normal Anatomy of the Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.

Mitrofanа Sedina str., 4, Krasnodar, 350063



O. Y. Sherbakov
Kuban State Medical University
Russian Federation

Oleg Y. Sherbakov — Student of the Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.

Mitrofanа Sedina str., 4, Krasnodar, 350063



S. S. Pilipenko
Kuban State Medical University
Russian Federation

Stanislav S. Pilipenko — graduate student of the Department of Normal Physiology of the Kuban State Medical University of the Ministry of Healthcare of the Russian.

Mitrofanа Sedina str., 4, Krasnodar, 350063

tel.: +7 (918) 316-10-62



D. A. Pocheshkhova
Kuban State Medical University
Russian Federation

Darina A. Pocheshkhova — Student of the Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.

Mitrofanа Sedina str., 4, Krasnodar, 350063



References

1. Pedrini F.A., Boriani F., Bolognesi F., Fazio N., Marchetti C., Baldini N. Cell-Enhanced Acellular Nerve Allografts for Peripheral Nerve Reconstruction: A Systematic Review and a Meta-Analysis of the Literature. Neurosurgery. 2019; 85(5): 575–604. DOI: 10.1093/neuros/nyy374

2. Zhou L.N., Zhang J.W., Liu X.L., Zhou L.H. Co-Graft of Bone Marrow Stromal Cells and Schwann Cells Into Acellular Nerve Scaffold for Sciatic Nerve Regeneration in Rats. J. Oral. Maxillofac. Surg. 2015; 73(8): 1651–1660. DOI: 10.1016/j.joms.2015.02.013

3. Ronchi G., Morano M., Fregnan F., Pugliese P., Crosio A., Tos P., Geuna S., Haastert-Talini K., Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front. Cell Neurosci. 2019; 13: 288. DOI: 10.3389/fncel.2019.00288

4. Zhang Y.R., Ka K., Zhang G.C., Zhang H., Shang Y., Zhao G.Q., Huang W.H. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells. Neural. Regen. Res. 2015; 10(9): 1498–1506. DOI: 10.4103/1673-5374.165523

5. Li Y.J., Zhao B.L., Lv H.Z., Qin Z.G., Luo M. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models. Neural. Regen. Res. 2016; 11(8): 1322–1326. DOI: 10.4103/1673-5374.189198

6. Kaizawa Y., Kakinoki R., Ikeguchi R., Ohta S., Noguchi T., Takeuchi H., Oda H., Yurie H., Matsuda S. A Nerve Conduit Containing a Vascular Bundle and Implanted With Bone Marrow Stromal Cells and Decellularized Allogenic Nerve Matrix. Cell Transplant. 2017; 26(2): 215–228. DOI: 10.3727/096368916X692951

7. Meder T., Prest T., Skillen C., Marchal L., Yupanqui V.T., Soletti L., Gardner P., Cheetham J., Brown B.N. Nerve-specific extracellular matrix hydrogel promotes functional regeneration following nerve gap injury. NPJ Regen. Med. 2021; 6(1): 69. DOI: 10.1038/s41536-021-00174-8

8. Karimi Khezri M., Turkkan A., Koc C., Salman B., Levent P., Cakir A., Kafa I.M., Cansev M., Bekar A. Uridine treatment improves nerve regeneration and functional recovery in a rat model of sciatic nerve injury. Turk. Neurosurg. 2021. DOI: 10.5137/1019-5149.JTN.36142-21.2

9. Wang Y., Li W.Y., Jia H., Zhai F.G., Qu W.R., Cheng Y.X., Liu Y.C., Deng L.X., Guo S.F., Jin Z.S. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration. Neuroscience. 2017; 340: 319–332. DOI: 10.1016/j.neuroscience.2016.10.069

10. Xiang F., Wei D., Yang Y., Chi H., Yang K., Sun Y. Tissue-engineered nerve graft with tetramethylpyrazine for repair of sciatic nerve defects in rats. Neurosci. Lett. 2017; 638: 114–120. DOI: 10.1016/j.neulet.2016.12.

11. Wang H., Wu J., Zhang X., Ding L., Zeng Q. Study of synergistic role of allogenic skin-derived precursor differentiated Schwann cells and heregulin-1β in nerve regeneration with an acellular nerve allograft. Neurochem. Int. 2016; 97: 146–153. DOI: 10.1016/j.neuint.2016.04.003

12. Nicolai E.N., Settell M.L., Knudsen B.E., McConico A.L., Gosink B.A., Trevathan J.K., Baumgart I.W., Ross E.K., Pelot N.A., Grill W.M., Gustafson K.J., Shoffstall A.J., Williams J.C., Ludwig K.A. Sources of off-target effects of vagus nerve stimulation using the helical clinical lead in domestic pigs. J. Neural. Eng. 2020; 17(4): 046017. DOI: 10.1088/1741-2552/ab9db8

13. Silveira C., Brunton E., Spendiff S., Nazarpour K. Influence of nerve cuff channel count and implantation site on the separability of afferent ENG. J. Neural. Eng. 2018; 15(4): 046004. DOI: 10.1088/1741-2552/aabca0

14. Werdin F., Grüssinger H., Jaminet P., Kraus A., Manoli T., Danker T., Guenther E., Haerlec M., Schaller H.E., Sinis N. An improved electrophysiological method to study peripheral nerve regeneration in rats. J. Neurosci. Methods. 2009; 182(1): 71–77. DOI: 10.1016/j.jneumeth.2009.05.017

15. Kent A.R., Grill W.M. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve. J. Neural. Eng. 2013; 10(3): 036010. DOI: 10.1088/1741-2560/10/3/036010

16. Chu J.U., Song K.I., Han S., Lee S.H., Kim J., Kang J.Y., Hwang D., Suh J.K., Choi K., Youn I. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems. Physiol. Meas. 2012; 33(6): 943–967. DOI: 10.1088/0967-3334/33/6/943

17. Sabetian P., Popovic M.R., Yoo P.B. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity. J. Neural. Eng. 2017; 14(3): 036015. DOI: 10.1088/1741-2552/aa6407

18. Davis T.T., Day T.F., Bae H.W., Rasouli A. Femoral Neurogram Before Transpsoas Spinal Access at L4-5 Intervertebral Disk Space: A Proposed Screening Tool. J. Spinal. Disord. Tech. 2015; 28(7): E400–E404. DOI: 10.1097/BSD.0b013e31829cc16c

19. Koh R.G.L., Zariffa J., Jabban L., Yen S.C., Donaldson N, Metcalfe BW. Tutorial: a guide to techniques for analysing recordings from the peripheral nervous system. J. Neural. Eng. 2022; 19(4). DOI: 10.1088/1741-2552/ac7d74

20. van Neck J.W., de Kool B.S., Hekking-Weijma J., Walbeehm E.T., Visser G.H., Blok J.H. Histological validation of ultrasound-guided neurography in early nerve regeneration. Muscle. Nerve. 2009; 40(6): 967–975. DOI: 10.1002/mus.21405

21. Tan D.W., Schiefer M.A., Keith M.W., Anderson J.R., Tyler J., Tyler D.J. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 2014; 6(257): 257ra138. DOI: 10.1126/scitranslmed.3008669

22. Horcholle-Bossavit G., Quenet B. Methods for frequency and correlation analyses of neurograms. MethodsX. 2021; 8: 101258. DOI: 10.1016/j.mex.2021.101258

23. Provitera V., Piscosquito G., Manganelli F., Mozzillo S., Caporaso G., Stancanelli A., Borreca I., Di Caprio G., Santoro L., Nolano M. A Model to Study Myelinated Fiber Degeneration and Regeneration in Human Skin. Ann. Neurol. 2020; 87(3): 456–465. DOI: 10.1002/ana.25662

24. Silverman H.A., Stiegler A., Tsaava T., Newman J., Steinberg B.E., Masi E.B., Robbiati S., Bouton C., Huerta P.T., Chavan S.S., Tracey K.J. Standardization of methods to record Vagus nerve activity in mice. Bioelectron. Med. 2018; 4: 3. DOI: 10.1186/s42234-018-0002-y

25. Gantsgorn E.V., Khloponin D.P., Maklyakov Yu.S. Survival analysis and spatial-frequency distribution of eeg-indices in rats’ global cerebral ischemia. Kuban Scientific Medical Bulletin. 2017; 1(2): 43–49. DOI: 10.25207/1608-6228-2017-2-43-49


Supplementary files

Review

For citations:


Pokrovskiy V.M., Ardelyan A.N., Tashu B.S., Arutyunyan N.A., Sherbakov O.Y., Pilipenko S.S., Pocheshkhova D.A. Anodal Block in Evaluation of Nerve Conduction Changes in Anesthetized Rats: Preclinical Non-Randomized Experimental Study. Kuban Scientific Medical Bulletin. 2022;29(6):107-120. (In Russ.) https://doi.org/10.25207/1608-6228-2022-29-6-107-120

Views: 581


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)