Preview

Kuban Scientific Medical Bulletin

Advanced search

History of alternative preventive therapies for type 1 diabetes mellitus

https://doi.org/10.25207/1608-6228-2025-32-1-87-98

Abstract

Background. Type 1 diabetes mellitus refers to one of the most prevalent chronic diseases. In recent years, a steady growth in this nosology has been registered in the Russian Federation, as well as globally, particularly among children and adolescents. Consequently, the number of children and adolescents classified as disabled by type 1 diabetes mellitus is also rising, prompting the global medical community to focus on mitigating these issues. The primary treatment for type 1 diabetes mellitus involves insulin replacement therapy combined with self-monitoring of blood glucose levels. Currently, insulin pumps and devices for continuous glucose monitoring have been developed and implemented in clinical practice, enhancing the effectiveness of type 1 diabetes mellitus treatment and significantly improving the quality and expectation of lives. However, even hybrid closed-loop systems (a combination of continuous subcutaneous insulin infusion and continuous glucose monitoring) fail to achieve physiological regulation of blood glucose levels and to completely eliminate the risk of long-term complications.

Objectives. To explore the history of alternative preventive therapeutic methods for type 1 diabetes mellitus based on data from both Russian and international research literature.

Methods. A comparative analysis of literature from both Russian and international authors addressing the issues of therapy and prevention of type 1 diabetes mellitus was conducted using the scientometric database eLibrary. ru and the biomedical search engine PubMed.

Results. The search for alternative therapeutic methods that can prevent or delay the onset of the diabetes remains relevant. These therapeutic methods can be conditionally divided into conservative and surgical approaches,  primarily aimed at protecting pancreatic β-cells from immune-mediated destruction. Notable immunotherapeutic agents include antiproliferative agents, systemic immunomodulators, T-cell inhibitors, monoclonal antibodies, autoantigens, various types of stem cells, dendritic cells, and microbiota therapy.

Conclusion. The paper presents several experimental methods of preventive therapy for type 1 diabetes mellitus and the results of studies conducted in this area, describes the proposed mechanisms for establishing immunological tolerance. A brief overview of completed and ongoing clinical trials is provided.

About the Authors

T. S. Khobotkova
Kemerovo State Medical University
Russian Federation

Tatyana S. Khobotkova* — Cand. Sci. (Med.), Assistant, Department of Pediatrics and Neonatology

Voroshilova str., 22a, Kemerovo, 650056



N. N. Minyailova
Kemerovo State Medical University
Russian Federation

Natalya N. Minyailova — Dr. Sci. (Med.), Assoc. Prof., Prof., Department of Pediatrics and Neonatology

Voroshilova str., 22a, Kemerovo, 650056



O. V. Budnikova
Yurga City Hospital
Russian Federation

Olesya V. Budnikova — Cand. Sci. (Med.), Pediatric Endocrinologist

Shosseyny Pereulok, 8, Yurga, 652050



A. V. Vedernikova
Kemerovo State Medical University
Russian Federation

Alena V. Vedernikova — Cand. Sci. (Med.), Assistant, Department of Pediatrics and Neonatology

Voroshilova str., 22a, Kemerovo, 650056



References

1. Dedov II, Shestakova MV, Mayorov AY, Shamkhalova MS, Nikonova TV, Sukhareva OYu, Pekareva EV, Ibragimova LI, Mikhina MS, Galstyan GR, Tokmakova AYu, Surkova EV, Laptev DN, Kononenko IV, Egorova DN, Klefortova II, Sklyanik IA, Yarek-Martynova IYa, Severina AS, Martynov SA, Vikulova OK, Kalashnikov VYu, Gomova IS, Lipatov DV, Starostina EG, Ametov AS, Antsiferov MB, Bardymova TP, Bondar IA, Valeeva FV, Demidova TYu, Klimontov VV, Mkrtumyan AM, Petunina NA, Suplotova LA, Ushakova OV, Khalimov YuSh, Ruyatkina LA. Diabetes mellitus type 1 in adults. Diabetes mellitus. 2020;23(1S):42–114 (In Russ.). https://doi.org/10.14341/DM12505

2. de Bock M, Codner E, Craig ME, Huynh T, Maahs DM, Mahmud FH, Marcovecchio L, DiMeglio LA. ISPAD Clinical Practice Consensus Guidelines 2022: Glycemic targets and glucose monitoring for children, adolescents, and young people with diabetes. Pediatr Diabetes. 2022;23(8):1270–1276. https://doi.org/10.1111/pedi.13455

3. Morgunov LYu. Flash glucose monitoring in patients with diabetes mellitus: simple, convenient, necessary. Endocrinology: News, Opinions, Training. 2021;10(4):69–78 (In Russ.). https://doi.org/10.33029/2304-9529-2021-10-4-69-78

4. Antsiferov MB, Demidov NA, Koteshkova OM, Markova TN, Pashkova EYu, Mishra OA, Kurganovich AV. Assessment of the variability of glycemic levels based on self-control. Pilot project results. Endocrinology: News, Opinions, Training. 2021;10(2):26–31 (In Russ.). https://doi.org/10.33029/2304-9529-2021-10-2-26-31

5. Volkova AR, Chernaya ME, Lisker AV, Vlasova KA. Analysis of the experience of using insulin therapy with the closed loop method among patients with type 1 diabetes in Russia. Endocrinology: News, Opinions, Training. 2020;9(1):35–41 (In Russ.). https://doi.org/10.33029/2304-9529-2020-9-1-35-41

6. Michels AW, von Herrath M. 2011 Update: antigen-specific therapy in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2011;18(4):235– 240. https://doi.org/10.1097/MED.0b013e32834803ae

7. Laptev DN. Immunotherapy for type 1 diabetes: state-of-the-art and prospects. Part 1. Problems of Endocrinology. 2009;55(4):24–34 (In Russ.). https://doi.org/10.14341/probl200955424-34

8. Ибрагимова Л.И., Колпакова Е.А., Дзагахова А.В., Егшатян Л.В., Покровская Е.В., Деревянко О.С., Никонова Т.В. Роль микробиоты кишечника в развитии сахарного диабета 1 типа. Сахарный диабет. 2021;24(1):62–69. https://doi.org/10.14341/DM10326 Ibragimova LI, Kolpakova EA, Dzagakhova AV, Egshatyan LV, Pokrovskaya EV, Derevyanko OS, Nikonova TV. The role of the gut microbiota in the development of type 1 diabetes mellitus. Diabetes mellitus. 2021;24(1):62–69 (In Russ.). https://doi.org/10.14341/DM10326

9. Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1685–1691. https://doi.org/10.1056/NEJMoa012350

10. Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, Cuthbertson D, Rafkin-Mervis LE, Chase HP, Leschek E. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial-Type 1. Diabetes Care. 2005;28(5):1068–1076. https:// doi.org/10.2337/diacare.28.5.1068

11. Vehik K, Cuthbertson D, Ruhlig H, Schatz DA, Peakman M, Krischer JP; DPT-1 and TrialNet Study Groups. Long-term outcome of individuals treated with oral insulin: diabetes prevention trial-type 1 (DPT1) oral insulin trial. Diabetes Care. 2011;34(7):1585–1590. https://doi.org/10.2337/dc11-0523

12. Vandemeulebroucke E, Gorus FK, Decochez K, Weets I, Keymeulen B, De Block C, Tits J, Pipeleers DG, Mathieu C; Belgian Diabetes Registry. Insulin treatment in IA-2A-positive relatives of type 1 diabetic patients. Diabetes Metab. 2009;35(4):319–327. https://doi.org/10.1016/j.diabet.2009.02.005

13. Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group; Krischer JP, Schatz DA, Bundy B, Skyler JS, Greenbaum CJ. Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes: A Randomized Clinical Trial. JAMA. 2017;318(19):1891–1902. https://doi.org/10.1001/jama.2017.17070

14. Martinez NR, Augstein P, Moustakas AK, Papadopoulos GK, Gregori S, Adorini L, Jackson DC, Harrison LC. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J Clin Invest. 2003;111(9):1365–1371. https://doi.org/10.1172/JCI17166

15. Näntö-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, Korhonen S, Erkkola R, Sipilä JI, Haavisto L, Siltala M, Tuominen J, Hakalax J, Hyöty H, Ilonen J, Veijola R, Simell T, Knip M, Simell O. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372(9651):1746–1755. https://doi.org/10.1016/S0140-6736(08)61309-4

16. Elding Larsson H, Lundgren M, Jonsdottir B, Cuthbertson D, Krischer J; DiAPREV-IT Study Group. Safety and efficacy of autoantigen-specific therapy with 2 doses of alum-formulated glutamate decarboxylase in children with multiple islet autoantibodies and risk for type 1 diabetes: A randomized clinical trial. Pediatr Diabetes. 2018;19(3):410–419. https://doi.org/10.1111/pedi.12611

17. Casas R, Dietrich F, Barcenilla H, Tavira B, Wahlberg J, Achenbach P, Ludvigsson J. Glutamic Acid Decarboxylase Injection Into Lymph Nodes: Beta Cell Function and Immune Responses in Recent Onset Type 1 Diabetes Patients. Front Immunol. 2020;11:564921. https://doi.org/10.3389/fimmu.2020.564921

18. Ludvigsson J. GAD65: a prospective vaccine for treating Type 1 diabetes? Expert Opin Biol Ther. 2017;17(8):1033–1043. https://doi.org/10.1080/14712598.2017.1328495

19. Puente-Marin S, Dietrich F, Achenbach P, Barcenilla H, Ludvigsson J, Casas R. Intralymphatic glutamic acid decarboxylase administration in type 1 diabetes patients induced a distinctive early immune response in patients with DR3DQ2 haplotype. Front Immunol. 2023;14:1112570. https://doi.org/10.3389/fimmu.2023.1112570

20. Casas R, Dietrich F, Puente-Marin S, Barcenilla H, Tavira B, Wahlberg J, Achenbach P, Ludvigsson J. Intra-lymphatic administration of GAD-alum in type 1 diabetes: long-term follow-up and effect of a late booster dose (the DIAGNODE Extension trial). Acta Diabetol. 2022;59(5):687–696. https://doi.org/10.1007/s00592-022-01852-9

21. Ludvigsson J. Autoantigen Treatment in Type 1 Diabetes: Unsolved Questions on How to Select Autoantigen and Administration Route. Int J Mol Sci. 2020;21(5):1598. https://doi.org/10.3390/ijms21051598

22. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–238. https://doi.org/10.1056/NEJM200007273430401

23. Lombardo C, Perrone VG, Amorese G, Vistoli F, Baronti W, Marchetti P, Boggi U. Update on pancreatic transplantation on the management of diabetes. Minerva Med. 2017;108(5):405–418. https://doi.org/10.23736/S0026-4806.17.05224-7

24. Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev. 2019;40(2):631–668. https://doi.org/10.1210/er.2018-00154

25. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159(2):428–439. https://doi.org/10.1016/j.cell.2014.09.040

26. Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–1772. https://doi.org/10.15252/embj.201591058

27. Mu XP, Ren LQ, Yan HW, Zhang XM, Xu TM, Wei AH, Jiang JL. Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig. 2017;8(1):34–43. https://doi.org/10.1111/jdi.12544

28. Yabe SG, Fukuda S, Takeda F, Nashiro K, Shimoda M, Okochi H. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells. J Diabetes. 2017 Feb;9(2):168–179. doi: 10.1111/1753-0407.12400. Epub 2016 May 31. PMID: 27038181

29. Päth G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus — Focus on mesenchymal stem cells. Metabolism. 2019;90:1–15. https://doi.org/10.1016/j.metabol.2018.10.005

30. Tao T, Wang Y, Chen W, Li Z, Su W, Guo Y, Deng P, Qin J. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip. 2019;19(6):948–958. https://doi.org/10.1039/c8lc01298a

31. Hwang G, Jeong H, Yang HK, Kim HS, Hong H, Kim NJ, Oh IH, Yim HW. Efficacies of Stem Cell Therapies for Functional Improvement of the β Cell in Patients with Diabetes: A Systematic Review of Controlled Clinical Trials. Int J Stem Cells. 2019;12(2):195–205. https://doi.org/10.15283/ijsc18076

32. Herold KC, Gitelman SE, Ehlers MR, Gottlieb PA, Greenbaum CJ, Hagopian W, Boyle KD, Keyes-Elstein L, Aggarwal S, Phippard D, Sayre PH, McNamara J, Bluestone JA; AbATE Study Team. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes. 2013;62(11):3766–3774. https://doi.org/10.2337/db13-0345

33. Lord S, Greenbaum CJ. Insulin is necessary but not sufficient: changing the therapeutic paradigm in type 1 diabetes. F1000Res. 2020;9:F1000 Faculty Rev-827. https://doi.org/10.12688/f1000research.21801.1

34. Hagopian W, Ferry RJ Jr, Sherry N, Carlin D, Bonvini E, Johnson S, Stein KE, Koenig S, Daifotis AG, Herold KC, Ludvigsson J; Protégé Trial Investigators. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial. Diabetes. 2013;62(11):3901–3908. https://doi.org/10.2337/db13-0236

35. Greenbaum C, Lord S, VanBuecken D. Emerging Concepts on Disease-Modifying Therapies in Type 1 Diabetes. Curr Diab Rep. 2017;17(11):119. https://doi.org/10.1007/s11892-017-0932-x

36. O’Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne). 2024;15:1477101. https://doi.org/10.3389/fendo.2024.1477101

37. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, Gitelman SE, Gottlieb PA, Krischer JP, Linsley PS, Marks JB, Moore W, Moran A, Rodriguez H, Russell WE, Schatz D, Skyler JS, Tsalikian E, Wherrett DK, Ziegler AG, Greenbaum CJ; Type 1 Diabetes TrialNet Study Group. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med. 2019;381(7):603–613. https://doi.org/10.1056/NEJMoa1902226

38. Sims EK, Bundy BN, Stier K, Serti E, Lim N, Long SA, Geyer SM, Moran A, Greenbaum CJ, Evans-Molina C, Herold KC; Type 1 Diabetes TrialNet Study Group. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med. 2021;13(583):eabc8980. https://doi.org/10.1126/scitranslmed.abc8980

39. Lampeter EF, Klinghammer A, Scherbaum WA, Heinze E, Haastert B, Giani G, Kolb H. The Deutsche Nicotinamide Intervention Study: an attempt to prevent type 1 diabetes. DENIS Group. Diabetes. 1998;47(6):980–984. https://doi.org/10.2337/diabetes.47.6.980

40. Laptev DN, Dedov II. Towards prevention of type 1 diabetes: FDA approved first drug with potential to delay clinical stage of disease. Diabetes mellitus. 2022;25(6):576–579 (In Russ.). https://doi.org/10.14341/DM12988

41. Gale EA, Bingley PJ, Emmett CL, Collier T; European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004;363(9413):925–931. https://doi.org/10.1016/S0140-6736(04)15786-3

42. Elliott RB, Pilcher CC, Stewart A, Fergusson D, McGregor MA. The use of nicotinamide in the prevention of type 1 diabetes. Ann N Y Acad Sci. 1993;696:333–341. https://doi.org/10.1111/j.1749-6632.1993.tb17169.x

43. Gale EA, Bingley PJ, Emmett CL, Collier T; European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004;363(9413):925–931. https://doi.org/10.1016/S0140-6736(04)15786-3

44. Pandey A, Tripathi P, Pandey R, Srivatava R, Goswami S. Alternative therapies useful in the management of diabetes: A systematic review. J Pharm Bioallied Sci. 2011;3(4):504–512. https://doi.org/10.4103/0975-7406.90103

45. Böhmer KP, Kolb H, Kuglin B, Zielasek J, Hübinger A, Lampeter EF, Weber B, Kolb-Bachofen V, Jastram HU, Bertrams J, et al. Linear loss of insulin secretory capacity during the last six months preceding IDDM. No effect of antiedematous therapy with ketotifen. Diabetes Care. 1994;17(2):138–141. https://doi.org/10.2337/diacare.17.2.138

46. Carel JC, Boitard C, Eisenbarth G, Bach JF, Bougnères PF. Cyclosporine delays but does not prevent clinical onset in glucose intolerant pretype 1 diabetic children. J Autoimmun. 1996;9(6):739–745. https://doi.org/10.1006/jaut.1996.0096

47. Huppmann M, Baumgarten A, Ziegler AG, Bonifacio E. Neonatal Bacille Calmette-Guerin vaccination and type 1 diabetes. Diabetes Care. 2005;28(5):1204–1206. https://doi.org/10.2337/diacare.28.5.1204

48. Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA. 2003;290(13):1721–1728. https://doi.org/10.1001/jama.290.13.1721

49. Al Hayek AA, Al Zahrani WM, AlAblani HM, Al Dawish MA. Metabolic control, adherence to the gluten-free diet and quality of life among patients with type 1 diabetes and celiac disease. Diabetol Metab Syndr. 2023;15(1):189. https://doi.org/10.1186/s13098-023-01167-x

50. Writing Group for the TRIGR Study Group; Knip M, Åkerblom HK, Al Taji E, Becker D, Bruining J, Castano L, Danne T, de Beaufort C, Dosch HM, Dupre J, Fraser WD, Howard N, Ilonen J, Konrad D, Kordonouri O, Krischer JP, Lawson ML, Ludvigsson J, Madacsy L, Mahon JL, Ormisson A, Palmer JP, Pozzilli P, Savilahti E, Serrano-Rios M, Songini M, Taback S, Vaarala O, White NH, Virtanen SM, Wasikowa R. Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical Trial. JAMA. 2018;319(1):38–48. https://doi.org/10.1001/jama.2017.19826

51. Felício KM, de Souza ACCB, Neto JFA, de Melo FTC, Carvalho CT, Arbage TP, de Rider Brito HA, Peixoto AS, de Oliveira AF, de Souza Resende F, Reis SS, Motta AR, da Costa Miranda H, Janau LC, Yamada ES, Felicio JS. Glycemic Variability and Insulin Needs in Patients with Type 1 Diabetes Mellitus Supplemented with Vitamin D: A Pilot Study Using Continuous Glucose Monitoring System. Curr Diabetes Rev. 2018;14(4):395–403. https://doi.org/10.2174/1573399813666170616075013

52. Nwosu BU. Guidance for high-dose vitamin D supplementation for prolonging the honeymoon phase in children and adolescents with new-onset type 1 diabetes. Front Endocrinol (Lausanne). 2022;13:974196. https://doi.org/10.3389/fendo.2022.974196

53. Mishra A, Dayal D, Sachdeva N, Attri SV. Effect of 6-months’ vitamin D supplementation on residual beta cell function in children with type 1 diabetes: a case control interventional study. J Pediatr Endocrinol Metab. 2016;29(4):395–400. https://doi.org/10.1515/jpem-2015-0088. PMID: 26244673

54. Giri D, Pintus D, Burnside G, Ghatak A, Mehta F, Paul P, Senniappan S. Treating vitamin D deficiency in children with type I diabetes could improve their glycaemic control. BMC Res Notes. 2017;10(1):465. https://doi.org/10.1186/s13104-017-2794-3

55. Gabbay MA, Sato MN, Finazzo C, Duarte AJ, Dib SA. Effect of cholecalciferol as adjunctive therapy with insulin on protective immunologic profile and decline of residual β-cell function in new-onset type 1 diabetes mellitus. Arch Pediatr Adolesc Med. 2012;166(7):601–607. https://doi.org/10.1001/archpediatrics.2012.164

56. Bogdanou D, Penna-Martinez M, Filmann N, Chung TL, Moran-Auth Y, Wehrle J, Cappel C, Huenecke S, Herrmann E, Koehl U, Badenhoop K. T-lymphocyte and glycemic status after vitamin D treatment in type 1 diabetes: A randomized controlled trial with sequential crossover. Diabetes Metab Res Rev. 2017;33(3)https://doi.org/10.1002/dmrr.2865

57. Panjiyar RP, Dayal D, Attri SV, Sachdeva N, Sharma R, Bhalla AK. Sustained serum 25-hydroxyvitamin D concentrations for one year with cholecalciferol supplementation improves glycaemic control and slows the decline of residual β cell function in children with type 1 diabetes. Pediatr Endocrinol Diabetes Metab. 2018;2018(3):111–117. https://doi.org/10.5114/pedm.2018.80992

58. Shih EM, Mittelman S, Pitukcheewanont P, Azen CG, Monzavi R. Effects of vitamin D repletion on glycemic control and inflammatory cytokines in adolescents with type 1 diabetes. Pediatr Diabetes. 2016 Feb;17(1):36–43. https://doi.org/10.1111/pedi.12238

59. Perchard R, Magee L, Whatmore A, Ivison F, Murray P, Stevens A, Mughal MZ, Ehtisham S, Campbell J, Ainsworth S, Marshall M, Bone M, Doughty I, Clayton PE. A pilot interventional study to evaluate the impact of cholecalciferol treatment on HbA1c in type 1 diabetes (T1D). Endocr Connect. 2017;6(4):225–231. https://doi.org/10.1530/EC-17-0045

60. He L, Chen R, Zhang B, Zhang S, Khan BA, Zhu D, Wu Z, Xiao C, Chen B, Chen F, Hou K. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus. Front Immunol. 2022;13:930872. https://doi.org/10.3389/fimmu.2022.930872


Review

For citations:


Khobotkova T.S., Minyailova N.N., Budnikova O.V., Vedernikova A.V. History of alternative preventive therapies for type 1 diabetes mellitus. Kuban Scientific Medical Bulletin. 2025;32(1):87-98. (In Russ.) https://doi.org/10.25207/1608-6228-2025-32-1-87-98

Views: 774


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)