Preview

Kuban Scientific Medical Bulletin

Advanced search

MODERN METHODS OF ANXIETY ASSESSMENT of RODENTS BY TESTS BASED ON UNCONDITIONal BEHAVIOR MODELS

https://doi.org/10.25207/1608-6228-2018-25-6-171-176

Abstract

Aim. The main aim of this research is to overview some main methods of anxiety assessment of animals by the behavioral tests based on the unconditional models. Animal models of anxiety disorders are actively used for studying their etiology and pathogenesis and for their treatment and prevention. This review describes some basic unconditional methods of anxiety disorders assessment in laboratory animals: open field test, light-dark box test / light-dark exploration box, elevated plus-maze and Suok test. The principles of conducting this test, regulated parameters and their link with anxiety-level are described.

Conclusion. A modern researcher possesses different methods of modeling anxiety disorders in rodents. The tendency to an in-depth assessment of the behavioral reactions is noted. The use of the described models allows us to reveal and analyze the anxiolytic activity of new pharmacological drugs and non-pharmacological methods of pathological anxiety management. The most important aspect of performing this research is the correct matching of received data and normal and pathological human physiology features. 

About the Authors

A. Kh. Kade
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


S. V. Kravchenko
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


A. I. Trofimenko
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


P. P. Poliakov
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


A. S. Lipatova
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


E. I. Ananeva
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


K. Iu. Chaplygina
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


E. A. Uvarova
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


O. A. Tereschenko
Federal State Budgetary Educational Institution of Higher Education Kuban State Medical University of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Sedina str., 4, Krasnodar, Russia, 350063.


References

1. Bandelow B., Michaelis S. Epidemiology of anxiety disor¬ders in the 21st century. Dialogues in Clinical Neuroscience. 2015; 17(3): 327-335. PMID: 26487813

2. Shejder R. Psihiatriya. Perevod s an- glijskogo. M.:«Praktika». 1998. 485p. (In Russ.)

3. Steimer T. The biology of fear- and anxiety-related behaviors. Di¬alogues in Clinical Neuroscience. 2002; 4(3): 231-249. PMID: 22033741

4. Rose M., Devine J. Assessment of patient-reported symp-toms of anxiety. Dialogues in Clinical Neuroscience. 2014; 16(2): 197-211. PMID: 25152658

5. Karkishchenko N.N., CHudina YU.A., Emel'yanova A.E., Emel'yanov A.A., CHajvanov D.B. Tekhnologiya modelirovaniya na laboratornyh zhivotnyh fizicheskih metodov vosstanovleniya organizma cheloveka v ehkstremal'nyh usloviyah na baze vektornoj modeli funkcional'nyh sostoyanij nervnoj sistemy. Biomedicina. 2016; 2: 4-14. (In Russ.)

6. Belovicova K., Bogi E., Csatlosova K., Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdisciplinary Toxicology. 2017; 10(1): 40-43. DOI: 10.1515/intox-2017-0006

7. Kaluev A.V. Izuchenie trevozhnosti u zhivotnyh - vchera, segodnya, zavtra. Stress ipovedenie: materialy 7-jmezhdisciplinar- noj konf. po biologicheskoj psihiatrii. M. 2003; 145-148. (In Russ.)

8. Amikishieva A.V. Povedencheskoe fenotipirovanie: sovremennye metody i oborudovanie. Vestnik VOGiS. 2009; 13(3): 529-542. (In Russ.)

9. Karkishchenko N.N. Osnovy biomodelirovaniya. M.: Izd-vo VPK. 2004. 608 p. (In Russ.)

10. Ennaceur A. Unconditioned tests of anxiety - Pitfalls and disappointments. Physiology & Behavior. 2014; 135: 55-71. DOI: 10.1016/j.physbeh.2014.05.032

11. Karkishchenko V.N., Fokin YU.V., Kazahova L.H., Alimkina O.V., Kasinskaya N.V. Metodiki izucheniya fiziologicheskih funkcij laboratornyh zhivotnyh dlya doklinicheskih issledovanij v sportivnoj medicine. Biomedicina. 2012; 4: 15-21. (In Russ.)

12. Sestakova N., Puzserova A., Kluknavsky M., Bernatova I. Determination of motor activity and anxiety-related behaviour in ro-dents: methodological aspects and role of nitric oxide. Interdisciplin-ary Toxicology. 2013; 6(3): 126-135. DOI: 10.2478/intox-2013-0020

13. Seibenhener M.L., Wooten M.C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. Jour-nal of visualized experiments: JoVE. 2015; 96: e52434-e52434. DOI: 10.3791/52434

14. Burn C.C. What is it like to be a rat? Rat sensory percep¬tion and its implications for experimental design and rat welfare. Applied Animal Behaviour Science. 2008; 112(1-2): 1-32. DOI: 10.1016/j.applanim.2008.02.007

15. Luo M., Xu Y., Cai R., Tang Y., Ge M.M., Liu Z.H., Xu L., Hu F., Ruan D.Y., Wang H.L. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol¬ogy Letters. 2014; 225(1): 78-85. DOI: 10.1016/j.toxlet.2013.11.025

16. Bolotova V.C., Krauz V.A., SHustov E.B. Biologicheskaya model' ehksperimental'nogo nevroza u laboratornyh zhivotnyh. Biomedicina. 2015; 1: 66-80. (In Russ.)

17. Hogg S. A review of the validity and variability of the el-evated plus-maze as an animal model of anxiety. Pharmacology Biochemistry and Behavior. 1996; 54(1): 21-30. PMID: 8728535

18. Sweis B.M., Bachour S.P., Brekke J.A., Gewirtz J.C., Sa- deghi-Bazargani H., Hevesi M., Divani A.A. A modified beam-walk¬ing apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury. Behavioural Brain Research. 2016; 296: 149-156. DOI: 10.1016/j.bbr.2015.09.015

19. Bourin M, Hascoet M. The mouse light/dark box test. Eu-ropean Journal of Pharmacology. 2003; 463(1-3): 55-65. DOI: 10.1016/S0014-2999(03)01274-3

20. Lomteva N.A., Kasimova S.K., Kondratenko E.I. Zavisimost' pove- deniya i urovnya trevozhnosti ot pola i gormonal'nogo statusa krys. Problemy reprodukcii. 2013; 3: 17-20. (In Russ.)

21. Kalueff A.V., Keisala T., Minasyan A., Kumar S.R., LaPorte J.L., Murphy D.L., Tuohimaa P. The regular and light-dark Suok tests of anxiety and sensorimotor integration: utility for behavior¬al characterization in laboratory rodents. Nature Protocols. 2008; 3(1): 129-136. DOI: 10.1038/nprot.2007.516

22. Hudyakova N.A. Vliyanie ciklogeksamina na aktivnost' myshej linii BALB v usloviyah suok-testa i testa «reshetka». Vestnik Udmurtskogo universiteta. 2014; 4: 67-71. (In Russ.)

23. Kushnareva E.Ju., Krupina N.A., Hlebnikova N.N., Kudrin V.S., Zolotov N.N., Kryzhanovskij G.N. Uroven' monoaminov i ih metabolitov v strukturah mozga krys s jeksperimental'nym trevozhno-depressivnym sostojaniem, vyzvannym vvedeniem ingibitora dipeptidilpeptidazy IV v rannem postnatal'nom periode. Nejrochymia. 2012; 29(1): 35-44. (In Russ.)

24. Kormos V., Gaszner B. Role of neuropeptides in anxiety, stress, and depression: From animals to humans. Neuropeptides. 2013; 47(6): 401-419. DOI: 10.1016/j.npep.2013.10.014

25. Taylor G.T., Huffman J. Kappa Opioid System Involvement in Mood and Anxiety Disorders. International Journal of Neurology Re¬search. 2016; 3(2): 358-363. DOI: 10.17554/j.issn.2313-5611.2017.03.70

26. Reyes B.A.S., Kravets J.L., Connelly K.L., Unterwald E.M., Van Bockstaele E.J. Localization of the delta opioid receptor and corticotropin-releasing factor in the amygdalar complex: role in anxiety. Brain structure & function. 2017; 222(2): 1007-1026. DOI: 10.1007/s00429-016-1261-6

27. Landgraf R., Wigger A., Holsboer F., Neumann I.D. Hyper-reactive hypothalamo-pituitary-adrenocortical axis in rats bred for high anxiety-related behavior. Journal of Neuroendocrinology. 1999; 11(6): 405-407. PMID: 10336720

28. Walf A.A., Frye C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols. 2007; 2(2): 322-328. DOI: 10.1038/nprot.2007.44

29. Ennaceur A., Chazot P.L. Preclinical animal anxiety re-search - flaws and prejudices. Pharmacology Research & Per-spectives. 2016; 4(2): 1-37. DOI: 10.1002/prp2.223


Review

For citations:


Kade A.Kh., Kravchenko S.V., Trofimenko A.I., Poliakov P.P., Lipatova A.S., Ananeva E.I., Chaplygina K.I., Uvarova E.A., Tereschenko O.A. MODERN METHODS OF ANXIETY ASSESSMENT of RODENTS BY TESTS BASED ON UNCONDITIONal BEHAVIOR MODELS. Kuban Scientific Medical Bulletin. 2018;25(6):171-176. (In Russ.) https://doi.org/10.25207/1608-6228-2018-25-6-171-176

Views: 1173


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)