Preview

Kuban Scientific Medical Bulletin

Advanced search

STUDY OF THE PHARMACOLOGICAL ACTIVITY OF LOWMOLECULAR ARGINASE II SELECTIVE INHIBITOR USING A MODEL OF MONOCROTALINE-INDUCED PULMONARY HYPERTENSION

https://doi.org/10.25207/1608-6228-2019-26-1-114-121

Abstract

The aim of the present work was to study the pharmacological activity of a low-molecular arginase II selective inhibitor (low-molecular compound with laboratory code ZB49) with the chemical formula 2-{1-[3-(3-[chloroisoxazole-5-yl) propyl] piperidin-4-yl}-6-(digibroxyboryl) norleucine dihydrochloride) using a model of monocrotaline-induced pulmonary hypertension

Materials and methods. The work was performed on 40 adult male Wistar rats weighing 180– 220 g. The simulation of monocrotaline pulmonary hypertension was performed on 20 animals using a subcutaneous injection of an alcohol-aqueous solution of monocrotaline (MCT) at a dose of 60 mg/kg in a volume of 0.5 ml per animal. 7 days after the MCT injection, the administration of the studied pharmaceutical substance (PS) (laboratory code ZB49) was started at a dose of 5 mg/kg. ZB49 was administered intragastrically, once a day with the administration duration of 21 days.

Results. Under the intragastric FS ZB49 administration at a dose of 5 mg/kg, a statistically significant decrease in the coefficient of endothelial dysfunction, systolic right ventricle pressure (SRVP), average the right ventricle pressure (ARVP), diastolic right ventricle pressure (DRVP), maximum contraction rate (dP/dt max) and minimum contraction rate (dP/dt min) was established at the background of the simulation of monocrotaline-induced pulmonary hypertension. At the same time, a statistically significant positive effect of ZB49 on the blood gas composition was established.

Conclusion. The study has confirmed the possibility of using arginase inhibitors to prevent the development of endothelial dysfunction and the disorders of nitric oxide metabolism in pulmonary arterial hypertension. Among the substances of this group, arginase II selective inhibitors should be considered as the most promising.

Conflict of interest: the authors declare no conflict of interest.

About the Authors

Liliya V. Korokina
Belgorod State National Research University
Russian Federation
tel.: +7 (951) 151-27-84; Pobedy str., 85, Belgorod, 308015


Mikhail V. Pokrovskii
Belgorod State National Research University
Russian Federation


Leonid V. Pazhinskii
Belgorod State National Research University
Russian Federation


Indira S. Kochkarova
Belgorod State National Research University
Russian Federation


Mikhail V. Korokin
Belgorod State National Research University
Russian Federation


References

1. Kozhevnikova V.V., Medvedeva N.A. Chronic administration of serotonin transport inhibitor (fluoxetine) decreases monocrotaline-induced pulmonary hypertension in rats. Eksperimental’naya i Klinicheskaya Farmakologiya. 2007; 70(5): 15–18 (In Russ., English abstract).

2. Brodskaya Т.A., Nevzorova V.A., Geltser B.I., Motkina E.V. Endothelial dysfunction and respiratory diseases. Terapevticheskii Arkhiv. 2007; 79(3): 76–84 (In Russ., English abstract).

3. Pokrovskaya T.G., Kochkarov V.I., Pokrovskii M.V. et al. Ispol’zovanie L-arginina v profilaktike narushenii funktsii endoteliya v usloviyakh ingibirovaniya endotelial’noi i indutsibel’noi NO-sintaz. Allergologiya i Immunologiya. 2008; 9(3): 328 (In Russ.).

4. Pokrovskii M.V., Pokrovskaya T.G., Kochkarov V.I., Artyushkova E.B. Endothelioprotective properties of L-arginine on a nitric oxide deficiency model. Eksperimental’naya i Klinicheskaya Farmakologiya. 2008; 71(2): 29–31 (In Russ., English abstract).

5. Kaminskii Yu.G., Suslikov A.V., Tikhonova L.A. et al. Arginase, nitrates, and nitrites in the blood plasma and erythrocytes in hypertension and after therapy with lisinopril and simvastatin. Izvestiya Akademii Nauk, Seriya Biologicheskaya. 2011; (5): 524–531.

6. Thacher T.N., Gambillara V., Riche F. et al. Regulation of arginase pathway in response to wall shear stress. Atherosclerosis. 2010; 210(1): 63–70. DOI: 10.1016/j. atherosclerosis.2009.10.031

7. Pokrovskaya T.G., Kochkarov V.I., Danilenko L.M. et al. Endotelioprotektivnoe deistvie L-arginina pri farmakologicheskom sposobe modelirovaniya defitsita oksida azota. Nauchnye Vedomosti BelGU. Ser. Meditsina. Farmakologiya. 2005; 1(21), 4: 41–50 (In Russ.).

8. Böger R.H. The pharmacodynamics of L-arginine. J. Nutr. 2007; 137 (6 Suppl 2): 1650S–1655S. DOI: 10.1093/jn/137.6.1650S

9. Bivalacqua T.J., Hellstrom W.J., Kadowitz P.J., Champion H.C. Increased expression of arginase II in human diabetic corpus cavernosum in diabetic-associated erectile dysfunction. Biochem. Biophys. Res. Commun. 2001; 283(4): 923–927. DOI: 10.1006/ bbrc.2001.4874

10. Yakushev V.I., Pokrovsky M.V., Beskhmelnitsyna E.A. et al. Arginase II — a new target in the development of endothelium protectors. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2015; (1): 26–30 (In Russ.). DOI: 10.30895/1991- 2919-2015-0-1-26-30

11. You H., Gao T., Cooper T.K. et al. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int. 2013; 84(6):1189–1197. DOI: 10.1038/ki.2013.215

12. Shemyakin A., Kövamees O., Rafnsson A. et al. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation. 2012; 126(25): 2943– 2950. DOI: 10.1161/Circulationaha.112.140335

13. Khong S.M., Andrews K.L., Huynh N.N. et al. Arginase II inhibition prevents nitrate tolerance. Br. J. Pharmacol. 2012; 166(7): 2015–2023. DOI: 10.1111/j.1476- 5381.2012.01876.x

14. Toque H.A., Nunes K.P., Rojas M. et al. Arginase 1 mediates increased blood pressure and contributes to vascular endothelial dysfunction in deoxycorticosterone acetate-salt hypertension. Front. Immunol. 2013; 4: 219. DOI: 10.3389/fimmu.2013.00219

15. Ivlitskaya I.L., Korokin M.V., Loktionov A.L. Pharmacological efficiency of statins and L-norvalin at an endotoxin-induced endothelial dysfunction. Research Result: Pharmacology and Clinical Pharmacology. 2016; 2(3): 25–35. DOI: 10.18413/2313-8971-2016-2- 2-25-35

16. Korokin M., Zhernakova N.I., Korokina L., Pokopejko O.N. Principles of pharmacological correction of pulmonary arterial hypertension. Research Results in Pharmacology. 2018; 4(2): 59–76. DOI: 10.3897/ rrpharmacology.4.27732

17. Denisyuk T.A., Lazareva G.A., Provotorov V.Y., Shaposhnikov A.A. Endothelium and cardioprotective effects of HMG-Co-A reductase in combination with L-arginine in endothelial dysfunction modeling. 2016. Research Result: Pharmacology and Clinical Pharmacology. 2016; 2(1): 4–8. DOI: 10.18413/2313-8971- 2016-2-1-4-8


Review

For citations:


Korokina L.V., Pokrovskii M.V., Pazhinskii L.V., Kochkarova I.S., Korokin M.V. STUDY OF THE PHARMACOLOGICAL ACTIVITY OF LOWMOLECULAR ARGINASE II SELECTIVE INHIBITOR USING A MODEL OF MONOCROTALINE-INDUCED PULMONARY HYPERTENSION. Kuban Scientific Medical Bulletin. 2019;26(1):114-121. (In Russ.) https://doi.org/10.25207/1608-6228-2019-26-1-114-121

Views: 689


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)