Preview

Kuban Scientific Medical Bulletin

Advanced search

GLUCOSE EXCHANGE DISORDERS IN PATIENTS TAKING GLUCOCORTICOSTEROIDS: FEATURES OF CLINICAL MANIFESTATIONS AND CORRECTION

https://doi.org/10.25207/1608-6228-2019-26-1-209-218

Abstract

The review deals with the problem of carbohydrate metabolism disorders in patients undergoing corticosteroid therapy, relevant for specialists in various fields. The article describes the epidemiology and risk factors for the development of carbohydrate metabolism disorders when using glucocorticosteroids. Contemporary information is provided about the diagnostics, prevalence and pathogenesis of steroid-induced hyperglycemia. A particular attention is paid to current data on various disorders of carbohydrate metabolism in patients with a therapeutic profile. Main approaches to the correction of glycemia in the steroid-induced disorders of carbohydrate metabolism using modern therapy are considered elucidated.

Conclusion. The widespread use of glucocorticosteroids, significant prevalence of the steroid-induced disorders of carbohydrate metabolism, features of the pathogenetic mechanisms of steroid-induced diabetes mellitus determine the need to create algorithms for the diagnosis and treatment of these conditions. A conclusion is made that rational glucose-lowering therapy that takes into account the pathogenetic and clinical aspects of the steroid-induced disorders of carbohydrate metabolism, can reduce the rate of macro- and microvascular complications.

Conflict of interest: the authors declare no conflict of interest.

About the Authors

Al’bert Yu. Selimov
Kuban State Medical University, Ministry of Healthcare of the Russian Federation
Russian Federation
tel.: +7 (918) 633-88-89; Generala Trosheva str., 17, Krasnodar, 350063


Lyudmila N. Eliseeva
Kuban State Medical University, Ministry of Healthcare of the Russian Federation
Russian Federation


Valeriya P. Kurinnaya
Research Institute — Regional Clinical Hospital No. 1 n.a. prof. S. V. Ochapovsky, Ministry of Health of the Krasnodar Krai
Russian Federation


Sergei P. Oranskii
Kuban State Medical University, Ministry of Healthcare of the Russian Federation
Russian Federation


References

1. Diabetes Control and Complications Trial Research Group, Nathan D.M., Genuth S., Lachin J., Cleary P., Crofford O. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993; 329(14): 977– 986. DOI: 10.1056/NEJM199309303291401

2. UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998; 352(9131): 837–853.

3. The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008; 358: 2560–2572. DOI: 10.1056/NEJMoa0802987

4. The FIELD study investigators. Effects of long-term fenofibrale therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005; 366(9500): 1849–1861. DOI: 10.1016/S0140-6736(05)67667-2

5. Sjolie A.K., Porta M., Parving H.H. et al. The DIabetic REtinopathy Candersantan Trials (DIRECT) Programme: baseline characteristics. J. Renin Angiotensin Aldosterone Syst. 2005; 6(1): 25–32. DOI: 10.3317/jraas.2005.003

6. Dedov I.I., Shestakova M.V., Galstyan G.R. The prevalence of type 2 diabetes in the adult population of Russia (NATION study). Sakharnyi Diabet. 2016; 19(2): 104–112 (In Russ., English abstract). DOI: 10.14341/DM2004116-17

7. Aryangat A.V., Gerich J.E. Type 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk. Vasc.Health Risk. Manag. 2010; 6: 145–155.

8. Kitasato L., Tojo T., Hatakeyama Y. et al. Postprandial hyperglycemia and endothelial function in type 2 diabetes: focus on. Cardiovasc. Diabetol. 2012; 11: 79. DOI: 10.1186/1475-2840-11-79

9. Gordin D., Saraheimo M., Tuomikangas J. et al. Influence of postprandial hyperglycemic conditions on arterial stiffness in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2016; 101(3): 1134–1143. DOI: 10.1210/jc.2015-3635

10. Fong A.C., Cheung N.W. The high incidence of steroid-induced hyperglycaemia in hospital. Diabetes Res. Clin. Pract. 2013; 99(3): 277–280. DOI: 10.1016/j. diabres.2012.12.023

11. Uzu T., Harada T., Sakaguchi M. et al. Glucocorticoid-induced diabetes mellitus: prevalence and risk factors in primary renal diseases. Nephron. Clin. Pract. 2007; 105(2): 54–57. DOI: 10.1159/000097598

12. Miyawaki Y., Katsuyama T., Sada K.E. et al. A retrospective observational study of glucocorticoid-induced diabetes mellitus with IgA nephropathy treated with tonsillectomy plus methylprednisolone pulse therapy. PLoS One. 2017; 12(5): e0178018. DOI: 10.1371/journal.pone.0178018

13. Dube S., Slama M.Q., Basu A. et al. Glucocorticoid excess increases hepatic 11β-HSD-1 activity in humans: implications in steroid-induced diabetes. J. Clin. Endocrinol. Metab. 2015; 100(11): 4155–4162. DOI: 10.1210/jc.2015-2673

14. Martínez B.B., Pereira A.C., Muzetti J.H. et al. Experimental model of glucocorticoid-induced insulin resistance. Acta. Cir. Bras. 2016; 31(10): 645–649. DOI: 10.1590/S0102-865020160100000001

15. Kim S.Y., Yoo C.G., Lee C.T. et al. Incidence and risk factors of steroid-induced diabetes in patients with

16. respiratory disease. J. Korean. Med. Sci. 2011; 26(2): 264–267. DOI: 10.3346/jkms.2011.26.2.264

17. Gulliford M.C., Charlton J., Latinovic R. Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care. 2006; 29(12): 2728– 2729. DOI: 10.2337/dc06-1499

18. Mills E., Devendra S. Steroid-induced hyperglycaemia in primary care. London J. Prim. Care (Abingdon). 2015; 7(5): 103–106. DOI: 10.1080/17571472.2015.1082344

19. Katsuyama T., Sada K.E., Namba S. et al. Risk factors for the development of glucocorticoid-induced diabetes mellitus. Diabetes Res. Clin. Pract. 2015; 108(2): 273–279. DOI: 10.1016/j.diabres.2015.02.010

20. Gurwitz J.H., Bohn R.L., Glynn R.J. Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch. Intern. Med. 1994; 154(1): 97–101.

21. Shaharir S.S., Gafor A.H., Said M.S. et al. Steroid-induced diabetes mellitus in systemic lupus erythematosus patients: analysis from a Malaysian multi-ethnic lupus cohort. Int. J. Rheum. Dis. 2015; 18(5): 541–547. DOI: 10.1111/1756-185X.12474

22. Jeong Y., Han H.S., Lee H.D. et al. A pilot study evaluating steroid-induced diabetes after antiemetic dexamethasone therapy in chemotherapy-treated cancer patients. Cancer Res. Treat. 2016; 48(4): 1429–1437. DOI: 10.4143/crt.2015.464

23. Lee S.Y., Kurita N., Yokoyama Y. et al. Glucocorticoid-induced diabetes mellitus in patients with lymphoma treated with CHOP chemotherapy. Support Care Cancer. 2014; 22(5): 1385–1390. DOI: 10.1007/ s00520-013-2097-8

24. Sugiyama T., Sugimoto T., Suzuki S. et al. Current smoking is an independent risk factor for new-onset diabetes mellitus during highdose glucocorticoid treatment. Int. J. Clin. Pharmacol Ther. 2015; 53(8): 616–620. DOI: 10.5414/CP202136

25. Morita H., Oki Y., Ito T. Administration of troglitazone, but not pioglitazone, reduces insulin resistance caused by short-term dexamethasone (DXM) treatment by accelerating the metabolism of DXM. Diabetes Care. 2001; 24(4): 788–789. DOI: 10.2337/ diacare.24.4.788

26. Ogawa A., Johnson J.H., Ohneda M. et al. Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced diabetes. J. Clin. Invest. 1992; 90(2): 497–504. DOI: 10.1172/JCI115886

27. Rebelato E., Santos L.R., Carpinelli A.R. et al. Shortterm high glucose culture potentiates pancreatic beta cell function. Sci Rep. 2018; 8(1): 13061. DOI: 10.1038/s41598-018-31325-5

28. Hauke S., Keutler K., Phapale P. et al. Endogenous fatty acids are essential signaling factors of pancreatic β-cells and insulin secretion. Diabetes. 2018; 67(10): 1986–1998. DOI: 10.2337/db17-1215

29. Hamamdzic D., Duzic E., Sherlock J.D. et al. Regulation of alpha 2-adrenergic receptor expression and signaling in pancreatic beta-cells. Am. J. Physiol. 1995; 269 (1 Pt 1): E162–171. DOI: 10.1152/ AJPENDO.1995.269.1.E162

30. Jacquement S., Briaud I., Rouault C. Longterm exposure of isolated rat islets to palitate inhibits insulin gene expression. Diabetes.1999; 48 (1058, Suppl 1): A 242.

31. Hagman D.K., Hays L.B., Parazzoli S.D. et al. Palmitate inhibits insulin gene expression by altering PDX1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J. Biol. Chem. 2005; 280(37): 32413–32418. DOI: 10.1074/JBC. M506000200

32. Weinstein S.P., Wilson C.M., Pritsker A. et al. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism. 1998; 47(1): 3–6.

33. Monnier L., Colette C., Dunseath G.J., Owens D.R. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007; 30(2): 263–269. DOI: 10.2337/dc06-1612

34. Burt M.G., Roberts G.W., Aguilar-Loza N.R. et al. Continuous monitoring of circadian glycemic patterns in patients receiving prednisolone for COPD. J. Clin. Endocrinol. Metab. 2011; 96(6): 1789–1796. DOI: 10.1210/jc.2010-2729

35. Otsuki M., Kitamura T., Tamada D. et al. Incompatibility between fasting and postprandial plasma glucose in patients with Cushing’s syndrome. Endocr. J. 2016; 63(11): 1017–1023. DOI: 10.1507/endocrj.EJ15-0748

36. De Micheli A. Corticosteroid induced diabetes mellitus: diagnosis and management. G. Ital. Nefrol. 2016 Malattie Metaboliche e Rene; 33(S68). pii: gin/33.S68.7

37. Burt M.G., Willenberg V.M., Petersons C.J. et al. Screening for diabetes in patients with inflammatory rheumatological disease administered long-term prednisolone: a cross-sectional study. Rheumatology (Oxford). 2012; 51(6): 1112–1119.

38. Yanai H., Masui Y., Yoshikawa R. et al. Dipeptidyl peptidase-4 inhibitor for steroid-induced diabetes. World J. Diabetes. 2010; 1(3): 99–100. DOI: 10.4239/ wjd.v1.i3.99

39. Katsuyama H., Sako A., Adachi H. et al. Effects of 6-month sitagliptin treatment on metabolic parameters in diabetic patients taking oral glucocorticoids: a retrospective cohort study. J. Clin. Med. Res. 2015; 7(6): 479–484. DOI: 10.14740/jocmr2153w

40. Ghandour S., Azar S. Incretin based therapy in the management of steroid induced diabetes mellitus. Curr. Diabetes Rev. 2014; 10(6): 360–363.

41. Ohashi N., Tsuji N., Naito Y. et al. Alogliptin improves steroid-induced hyperglycemia in treatment-naïve Japanese patients with chronic kidney disease by decrease of plasma glucagon levels. Med. Sci. Monit. 2014; 20: 587–593. DOI: 10.12659/MSM.889872

42. Fransson L., Dos Santos C., Wolbert P. et al. Liraglutide counteracts obesity and glucose intolerance in a mouse model of glucocorticoid-induced metabolic syndrome. Diabetol. Metab. Syndr. 2014; 6(1): 3. DOI: 10.1186/1758-5996-6-3

43. Vinodraj K., Nayak N. I.M., Rao J.V. et al. Comparison of the efficacy of liraglutide with pioglitazone on dexamethasone induced hepatic steatosis, dyslipidemia and hyperglycaemia in albino rats. Indian J. Pharmacol. 2015; 47(2): 181–184. DOI: 10.4103/0253- 7613.153426

44. Zhao R., Fuentes-Mattei E., Velazquez-Torres G. et al. Exenatide improves glucocorticoid-induced glucose intolerance in mice. Diabetes Metab. Syndr. Obes. 2011; 4: 61–65. DOI: 10.2147/DMSO.S15510

45. Tanaka M., Endo K., Suzuki T. et al. Treatment for steroid-induced diabetes with alpha-glucosidase inhibitor, voglibose. Eur. J. Neurol. 1998; 5(3): 315.

46. Ito S., Ogishima H., Kondo Y. Early diagnosis and treatment of steroid-induced diabetes mellitus in patients with rheumatoid arthritis and other connective tissue diseases. Mod. Rheumatol. 2014; 24(1): 52–59. DOI: 10.3109/14397595.2013.852855

47. Horasawa S., Osame K., Kawasumi K. et al. Efficacy of ipragliflozin in patients with steroid-induced hyperglycemia during cancer chemotherapy. Gan To Kagaku Ryoho. 2016; 43(5): 645–647 (In Japanese).

48. Willi S.M., Kennedy A., Brant B.P. et al. Effective use of thiazolidinediones for the treatment of glucocorticoid-induced diabetes. Diabetes Res. Clin. Pract. 2002; 58(2): 87–96.

49. Morita H., Oki Y., Ito T. et al. Administration of troglitazone, but not pioglitazone, reduces insulin resistance caused by short-term dexamethasone (DXM) treatment by accelerating the metabolism of DXM. Diabetes Care. 2001; 24(4): 788–789. DOI: 10.2337/ diacare.24.4.788

50. Spanakis E.K., Shah N., Malhotra K. et al. Insulin requirements in non-critically ill hospitalized patients with diabetes and steroid-induced hyperglycemia. Hosp. Pract. (1995). 2014; 42(2): 23–30. DOI: 10.3810/hp.2014.04.1100

51. Burt M.G., Drake S.M., Aguilar-Loza N.R. et al. Efficacy of a basal bolus insulin protocol to treat prednisolone-induced hyperglycaemia in hospitalised patients. Intern. Med. J. 2015; 45(3): 261–266. DOI: 10.1111/imj.12680


Review

For citations:


Selimov A.Yu., Eliseeva L.N., Kurinnaya V.P., Oranskii S.P. GLUCOSE EXCHANGE DISORDERS IN PATIENTS TAKING GLUCOCORTICOSTEROIDS: FEATURES OF CLINICAL MANIFESTATIONS AND CORRECTION. Kuban Scientific Medical Bulletin. 2019;26(1):209-218. (In Russ.) https://doi.org/10.25207/1608-6228-2019-26-1-209-218

Views: 757


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)