Preview

Kuban Scientific Medical Bulletin

Advanced search

THE ENCEPHALOMYOCARDITIS VIRUS (EMCV) AND ITS ZOONOTIC POTENTIAL (A Literature Review) PART I. MODERN VIEWS ON THE EMCV STRUCTURE AND ITS VIRAL CYCLE

https://doi.org/10.25207/1608-6228-2019-26-2-214-223

Abstract

There have been a growing number of the outbreaks of human diseases with typical zoonotic infections, which have previously occurred exclusively in veterinary practice. Among them is monkeypox, whose first occurrence outside the African continent was registered in the USA in the spring of 2003. An important factor contributing to the penetration of infections into the human population is a close contact of people with fauna representatives in the context of intensively growing cities. Therefore, research into new zoonotic diseases, which are potentially dangerous to humans, seems to be critically important. Thus, retrospective studies carried out among the Peru population in 2009 revealed the cases of the encephalomyocarditis virus (EMCV) (Picornaviridae family, Cardiovirus genus) infection in people having suffered from acute febrile illness. A new virus strain belonging to the same genus was described during the infection outbreak among primates of the Sukhumi Monkey nursery (Republic of Abkhazia) in 1990–1999. This strain was also identified during the outbreak among the monkeys of the Primatological Centre in the Krasnodar Krai in 2012. In this review, we generalize the data available on the structure, virulence factors and distribution of EMCV.

About the Authors

Akop A. Kalajdzhjan
Scientific Research Institute of Medical Primatology
Russian Federation

PhD Researcher, Laboratory of Molecular Biology,

Mira str., 177, Sochi, 354376



Azamat Kh. Kade
Kuban State Medical University, Ministry of Healthcare of the Russian Federation
Russian Federation

Dr. Sci. (Med.), Prof., Head of Department, Department of General and Clinical Pathological Physiology,

Mitrofanа Sedinа str., 4, Krasnodar, 350063



Pavel P.  Polyakov
Kuban State Medical University, Ministry of Healthcare of the Russian Federation
Russian Federation

Research Assistant, Department of General and Clinical Pathological Physiology,

Mitrofanа Sedinа str., 4, Krasnodar, 350063



Alla A. Gudmanova
Krasnodar City Clinical Hospital No. 3, Ministry of Healthcare of Krasnodar Krai
Russian Federation

Physician,

Aivazovskogo str., 97, Krasnodar, 350040



References

1. Carocci M., Bakkali-Kassimi L. The encephalomyocarditis virus. Virulence. 2012; 3(4): 351–367. DOI: 10.4161/viru.20573

2. Brahic M., Bureau J. F., Michiels T. The genetics of the persistent infection and demyelinating disease caused by Theiler’s virus. Annu. Rev. Microbiol. 2005; 59: 279– 298. DOI: 10.1146/annurev.micro.59.030804.121242

3. Roos R. P. Pathogenesis of Theiler’s murine encephalomyelitis virus-induced disease. Clin. Exp. Neuroimmunol. 2010; 1: 70–78. DOI: 10.1111/j.1759- 1961.2010.00008.x

4. Knowles N. J., Hovi T., Hyypiä T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T., Stanway G., Yamashita T., Zell R. Picornaviridae. In: King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J., editors. Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. San Diego: Elsevier; 2012: 855–880.

5. Himeda T., Ohara Y. Saffold virus, a novel human Cardiovirus with unknown pathogenicity. J. Virol. 2012; 86(3): 1292–1296. DOI: 10.1128/JVI.06087-11

6. Drexler J. F., Luna L. K. de S., Stöcker A., Almeida P. S., Ribeiro T. C., Petersen N., Herzog Р., Pedroso С., Huppertz H.-I., Ribeiro H., Baumgarte S., Drosten С. Circulation of 3 lineages of a novel Saffoldcardiovirus in humans. Emerg. Infect. Dis. 2008; 14(9): 1398–1405. DOI: 10.3201/eid1409.080570

7. Pan M., Yang X., Zhou L., Ge X., Guo X., Liu J., Zhang D., Yang H. Duck Hepatitis A virus possesses a distinct type IV internal ribosome entry site element of picornavirus. J. Virol. 2012; 86(2): 1129–1144. DOI: 10.1128/JVI.00306-11

8. Loughran G., Firth A. E., Atkins J. F. Ribosomal frame shifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proc. Nat. Acad. Sci. 2011; 108(46): E1111–1129. DOI: 10.1073/pnas.1102932108

9. Guy M., Chilmonczyk S., Crucière C., Eloit M., Bakkali-Kassimi L. Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virus requires binding to cell surface sialic acids. J. Gen. Virol. 2009; 90(1): 187–196. DOI: 10.1099/vir.0.004655-0

10. Hammoumi S., Guy M., Eloit M., Bakkali-Kassimi L. Encephalomyocarditis virus may use different pathways to initiate infection of primary human cardiomyocytes. Arch. Virol. 2012; 157(1): 43–52. DOI: 10.1007/s00705-011-1133-6

11. Bedard K. M., Semler B. L. Regulation of picornavirus gene expression. Microb. Infect. 2004; 6(7): 702–713. DOI: 10.1016/j.micinf.2004.03.001

12. Balvay L., Soto Rifo R., Ricci E. P., Decimo D., Ohlmann T. Structural and functional diversity of viral IRESes. Biochim. Biophys. Acta. 2009; 1789(9–10): 542– 557. DOI: 10.1016/j.bbagrm.2009.07.005

13. Schlax P. E., Zhang J., Lewis E., Planchart A., Lawson T. G. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo. Virology. 2006; 360(2): 350–363. DOI: 10.1016/j.virol.2006.10.043

14. Papon L., Oteiza A., Imaizumi T., Kato H., Brocchi E., Lawson T. G., Akira S., Mechti N. The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology. 2009; 393(2): 311–318. DOI: 10.1016/j.virol.2009.08.009

15. de Jong A. S., de Mattia F., Van Dommelen M. M., Lanke K., Melchers W. J., Willems P. H., van Kuppeveld F. J. Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking. J. Virol. 2008; 82(7): 3782–3790. DOI: 10.1128/JVI.02076-07

16. Choe S. S., Dodd D. A., Kirkegaard K. Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology. 2005; 337(1): 18–29. DOI: 10.1016/j.virol.2005.03.036

17. Wessels E., Duijsings D., Lanke K. H. W., van Dooren S. H., Jackson C. L., Melchers W. J., van Kuppeveld F. J. Effects of picornavirus 3A Proteins on Protein Transport and GBF1-dependent COP-I recruitment. J. Virol. 2006; 80(23): 11852–11860. DOI: 10.1128/JVI.01225-06

18. Moffat K., Howell G., Knox C., Belsham G. J., Monaghan P., Ryan M. D., Wileman T. Effects of footand-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J. Virol. 2005; 79(7): 4382–4395. DOI: 10.1128/JVI.79.7.4382-4395.2005

19. Moffat K., Knox C., Howell G., Clark S. J., Yang H., Belsham G. J., Ryan М., Wileman Т. Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. J. Virol. 2007; 81(3): 1129– 1139. DOI: 10.1128/JVI.00393-06

20. Zhang Y., Li Z., Xinna G., Xin G., Yang H. Autophagy promotes the replication of encephalomyocarditis virus in host cells. Autophagy. 2011; 7(6): 613–628. DOI: 10.4161/auto.7.6.15267

21. O’Donnell V., Pacheco J. M., LaRocco M., Burrage T., Jackson W., Rodriguez L. L., Borca M. V., Baxt B. Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology. 2011; 410(1): 142–150. DOI: 10.1016/j.virol.2010.10.042

22. Kirkegaard K. Subversion of the cellular autophagy pathway by viruses. Curr. Top. Microbiol. Immunol. 2009; 335: 323–333. DOI: 10.1007/978-3-642-00302-8_16

23. Daijogo S., Semler B. L. Mechanistic intersections between picornavirus translation and RNA replication. Adv. Virus. Res. 2011; 80: 1–24. DOI: 10.1016/B978-0-12-385987-7.00001-4

24. Liu Y., Wang C., Mueller S., Paul A. V., Wimmer E., Jiang P. Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathog. 2010; 6(8): e1001066. DOI: 10.1371/journal.ppat.1001066

25. Helwig F. C., Schmidt C. H. A filter-passing agent producing interstitial myocarditis in anthropoid apes and small animals. Science. 1945; 102(2637): 31–33. DOI: 10.1126/science.102.2637.31

26. Dick G. W. A., Smithburn K. C., Haddow A. J. Mengo encephalomyelitis virus. isolation and immunological properties. Br. J. Exp. Pathol. 1948; 29(6): 547–558.

27. de Jong A. S., Wessels E., Dijkman H. B. P.M., Galama J. M., Melchers W. J., Melchers W. J. G., Willems P. H., van Kuppeveld F. J. M. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J. Biol. Chem. 2003; 278: 1012–1021. DOI: 10.1074/jbc. M207745200

28. Porter D. C., Ansardi D. C., Morrow C. D. Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans. J. Virol. 1995; 69(3): 1548–1555.


Review

For citations:


Kalajdzhjan A.A., Kade A.Kh.,  Polyakov P.P., Gudmanova A.A. THE ENCEPHALOMYOCARDITIS VIRUS (EMCV) AND ITS ZOONOTIC POTENTIAL (A Literature Review) PART I. MODERN VIEWS ON THE EMCV STRUCTURE AND ITS VIRAL CYCLE. Kuban Scientific Medical Bulletin. 2019;26(2):214-223. (In Russ.) https://doi.org/10.25207/1608-6228-2019-26-2-214-223

Views: 995


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)