Роль и значение аспросина в регуляции пищевого поведения и метаболизма
https://doi.org/10.25207/1608-6228-2020-27-1-96-104
Аннотация
Об авторах
Р. Х. СалимхановРоссия
студент 6-го курса лечебного факультета,
ул. им. Митрофана Седина, д. 4, г. Краснодар, 350063
В. Р. Шарифуллин
Россия
студент 6-го курса лечебного факультета,
ул. им. Митрофана Седина, д. 4, г. Краснодар, 350063
Ю. Р Кушнарева
Россия
студентка 4-го курса лечебного факультета,
ул. им. Митрофана Седина, д. 4, г. Краснодар, 350063
А. Х. Каде
Россия
доктор медицинских наук, профессор, заведующий кафедрой общей и клинической патологической физиологии,
ул. им. Митрофана Седина, д. 4, г. Краснодар, 350063
П. П. Поляков
Россия
ассистент кафедры общей и клинической патологической физиологии,
ул. им. Митрофана Седина, д. 4, г. Краснодар, 350063
Список литературы
1. Zhang Y., Proenca, R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372(6505): 425–432. DOI: 10.1038/372425a0.
2. Romere C., Duerrschmid C., Bournat J., Constable P., Jain M., Xia F., Saha P.K., Del Solar M., Zhu B., York B., Sarkar P., Rendon D.A., Gaber M.W., LeMaire S.A., Coselli J.S., Milewicz D.M., Sutton V.R., Butte N.F., Moore D.D., Chopra A.R. Asprosin, a fasting-induced glucogenic protein hormone. Cell. 2016; 165(3): 566– 579. DOI: 10.1016/j.cell.2016.02.063
3. Duerrschmid C., He Y., Wang C., Li C., Bournat J.C., Romere C., Saha P.K., Lee M.E., Phillips K.J., Jain M., Jia P., Zhao Z., Farias M., Wu Q., Milewicz D.M., Sutton V.R., Moore D.D., Butte N.F., Krashes M.J., Xu Y., Chopra A.R. Asprosin is a centrally acting orexigenic hor mone. Nat. Med. 2017; 23(12): 1444– 1453. DOI: 10.1038/nm.4432
4. Paolacci S., Bertola D., Franco J., Mohammed S., Tartaglia M., Wollnik B., Hennekam R. C. WiedemannRautenstrauch syndrome: A phenotype analysis. Am. J. Med. Genet. A. 2017; 173(7): 1763–1772. DOI: 10.1002/ajmg.a.38246
5. Goldblatt J., Hyatt J., Edwards C., Walpole I. Further evidence for a marfanoid syn drome with neonatal progeroid features and severe generalized lipodystrophy due to frameshift mutations near the 3′ end of the FBN1 gene. J. Med. Genet. A. 2011; 155A(4): 717–720. DOI: 10.1002/ajmg.a.33906
6. Graul-Neumann L.M, Kienitz T., Robinson P.N., Baasanjav S., Karow B., Gillessen-Kaesbach G., Fahsold R., Schmidt H., Hoffmann K., Passarge E. Marfan syn drome with neonatal progeroid syndromelike lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the FBN1-gene. J. Med. Genet. A. 2010; 152A(11): 2749–2755. DOI: 10.1002/ ajmg.a.33690
7. Horn D., Robinson P.N. Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene. J. Med. Genet. A. 2011; 155A(4): 721–724. DOI: 10.1002/ ajmg.a.33905
8. Jacquinet A., Verloes A., Callewaert B., Coremans C., Coucke P., de Paepe A.,Debray F.G. Neonatal progeroid variant of Marfan syndrome with congenital lipodystrophy results from mutations at the 3′ end of FBN1 gene. Eur. J. Med. Genet. 2014; 57(5): 230– 234. DOI: 10.1016/j.ejmg.2014.02.012
9. Takenouchi T., Hida M., Sakamoto Y., Torii C., Kosaki R., Takahashi T., Kosaki K. Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penulti mate exon of FBN1 causing a recognizable phenotype. J. Med. Genet. A. 2013; 161A(12): 3057– 3062. DOI: 10.1002/ajmg.a.36157
10. Passarge E., Robinson P., Graul-Neumann L. Marfanoid-progeroid-lipodystrophy syndrome: a newly recognized fi brillinopathy. Eur. J. Hum. Genet. 2016; 24(9): 1244–1247. DOI: 10.1038/ejhg.2016.6
11. Lönnqvist D., Reinhardt L., Sakai L., Peltonen L. Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum. Mol. Genet. 1998; 7(13): 2039–2044. DOI: 10.1093/hmg/7.13.2039
12. Milewicz D.M., Grossfield J., Cao S.N., Kielty C., Covitz W., Jewett W. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J. Clin. Invest. 1995; 95(5): 2373–2378. DOI: 13.1172/JCI117930
13. Li E., Shan H., Chen L., Long A., Zhang Y., Liu Y., Jia L., Wei F., Han J., Li T., Liu X., Deng Y., Wang Y. OLFR734 Mediates Glucose Metabolism as a Receptor of Asprosin. Cell Metabolism. 2019; 30(2): 319–328. DOI: 10.1016/j.cmet.2019.05.022
14. Aponte Y., Atasoy D., Sternson S.M. AgRP neurons are sufficient to orches trate feeding behavior rapidly and without training. Nat. Neurosci. 2011; 14(3): 351– 355. DOI: 10.1038/nn.2739
15. Krashes M.J., Koda S., Ye C, Rogan S.C., Adams A.C., Cusher D.S., Maratos-Flier E., Roth B.L., Lowell B.B. Rapid, reversible activation of AgRP neurons drives feed ing behavior in mice. J. Clin. Invest. 2011. 121(4): 1424–1428. DOI: 10.1172/JCI46229
16. Luquet S., Perez F.A., Hnasko T.S., Palmiter, R.D. NPY/AgRP neurons are essen tial for feeding in adult mice but can be ablated in neonates. Science. 2005; 310(5748): 683–685. DOI: 10.1126/science.1115524
17. Atasoy D., Betley J.N., Su H.H., Sternson S.M. Deconstruction of a neural circuit for hunger. Nature. 2012; 488(7410): 172–177. DOI: 10.1038/nature11270
18. Tong Q., Ye C.P., Jones J.E., Elmquist J.K., Lowell B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neuro sci. 2008; 11(9): 998–1000. DOI: 10.1038/nn.2167
19. Denis R.G., Joly-Amado A., Webber E., Langlet F., Schaeffer M., Padilla S.L., Cansell C., Dehouck B., Castel J., Delbès A.S., Martinez S., Lacombe A., Rouch C., Kassis N., Fehrentz J.A., Martinez J., Verdié P., Hnasko T.S., Palmiter R.D., Krashes M.J., Güler A.D., Magnan C., Luquet S. Palatability can drive feeding independent of AgRP neurons. Cell Metabolism. 2015; 22(4): 646–657. DOI: 10.1016/j. cmet.2015.07.011
20. Garfield A.S., Li C., Madara J.C., Shah B.P., Webber E., Steger J.S., Campbell J.N., Gavrilova O., Lee C.E., Olson D.P., Elmquist J.K., Tannous B.A., Krashes M.J., Lowell B.B. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 2015; 18(6): 863–871. DOI: 10.1038/nn.4011
21. Zhang X., Jiang H., Ma X., Wu H. J. Increased serum level and impaired re sponse to glucose fluctuation of asprosin is associated with type 2 diabetes mellitus. J. Diabetes Investig. 2019; 16. DOI: 10.1111/jdi.13148
22. Wang Y., Qu H., Xiong X., Qiu Y., Liao Y., Chen Y., Zheng Y., Zheng H. Plasma asprosin concentrations are increased in individuals with glucose dysregulation and corre lated with insulin resistance and first phase insulin secretion. Mediators Inflamm. 2018; 2018: 9471583. DOI: 10.1155/2018/9471583
23. Alan M., Gurlek B., Yilmaz A., Aksit M., Aslanipour B., Gulhan İ., Mehmet C., Taner C. E. Asprosin: a novel peptide hormone related to insulin resistance in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2018; 35(3): 220–223. DOI: 10.1080/09513590.2018.1512967
24. Kocaman N., Artaş G. Can novel adipokines, asprosin and meteorin-like, be biomarkers for malignant mesothelioma? Biotech. Histochem. 2019; 1: 1–5. DOI: 10.1080/10520295.2019.1656344
25. Zhang Z., Tan Y., Zhu L., Zhang B., Feng P., Gao E., Xu C., Wang X., Yi W., Sun Y. Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 2019; 231: 116554. DOI: 10.1016/j.lfs.2019.116554
Рецензия
Для цитирования:
Салимханов Р.Х., Шарифуллин В.Р., Кушнарева Ю.Р., Каде А.Х., Поляков П.П. Роль и значение аспросина в регуляции пищевого поведения и метаболизма. Кубанский научный медицинский вестник. 2020;27(1):96-104. https://doi.org/10.25207/1608-6228-2020-27-1-96-104
For citation:
Salimkhanov R.H., Sharifullin V.R., Kushnareva Yu.R., Kade A.Kh., Polyakov P.P. Role and significance of asprosin in feeding behaviour and metabolism. Kuban Scientific Medical Bulletin. 2020;27(1):96-104. (In Russ.) https://doi.org/10.25207/1608-6228-2020-27-1-96-104