Preview

Kuban Scientific Medical Bulletin

Advanced search

Hemodynamic types of cutaneous microcirculation in rats: A selective experimental study

https://doi.org/10.25207/1608-6228-2024-31-6-40-55

Abstract

Background. To date, no unified approach exists to assessing the typological characteristics of peripheral microcirculation parameters, including those obtained through laser Doppler flowmetry, which diminishes the diagnostic value of the method but opens up prospects for experimental studies using laboratory animals. Objective. To identify and analyze the typological features of the cutaneous microhemodynamics of rats using laser Doppler flowmetry. Methods. A selective experimental study was conducted on 42 sexually mature male Wistar rats of mean age (192.21 ± 11.73 days) and weight (377.57 ± 21.93 g). Indices of cutaneous blood microcirculation were assessed using laser Doppler flowmetry with the laser blood flow analyzer “LAZMA-MC-1” (wavelength 0.8 μm) using the LDF 2.20.0.507WL software program (NPP Lazma, Russia). A comprehensive set of indices was recorded in the rats, allowing for the evaluation of individual-typological characteristics of cutaneous microhemodynamics: microcirculation index (average blood perfusion in microvessels per unit volume of tissue over the study period); flux (standard deviation from the arithmetic mean value of perfusion); coefficient of variation (ratio of flux to the mean value of perfusion); amplitudes of blood flow velocity fluctuations in endothelial, neurogenic, myogenic, respiratory, and cardiac frequency ranges; values of neurogenic, myogenic, and endothelium-dependent components of microvascular tone; ratio of blood inflow to venous outflow; value of nutritive and shunt perfusion; and microcirculation efficiency index. The significance of differences between index values in animals with different typological characteristics of cutaneous microhemodynamics (3 groups) was evaluated using the Kruskal-Wallis test, with the level of significance of differences between groups assessed by Dunn’s test. Results. Based on the assessment of baseline blood flow indicators in rats, three types of microcirculation were identified: aperiodic (41% of the sample), monotonic with low perfusion (33% of the sample), and monotonic with high perfusion (26% of the sample). These types, as demonstrated by wavelet analysis of the amplitude-frequency spectrum of dopplerograms, differ in their functional states concerning the main regulatory factors associated with endothelial, neurogenic, myogenic, and metabolic mechanisms and correspond to normo-, hypo-, and hyperemic hemodynamic types of microcirculation. Conclusion. The conducted study has revealed the typological features of cutaneous microhemodynamics and is instrumental in understanding the mechanisms of its functioning as well as in more effective applying laser Doppler flowmetry.

About the Authors

E. N. Chuyan
Vernadsky Crimean Federal University
Russian Federation

Elena N. Chuyan — Dr. Sci. (Biology), Prof., Head of the Department of Human and Animal Physiology and Biophysics, Institute of Biochemical Technologies, Ecology and Pharmacy

Akademika Vernadskogo Ave., 4, Simferopol, 295007



S. Yu. Liventsov
Vernadsky Crimean Federal University
Russian Federation

Stanislav Yu. Liventsov — Postgraduate Student, Department of Human and Animal Physiology and Biophysics, Institute of Biochemical Technologies, Ecology and Pharmacy

Akademika Vernadskogo Ave., 4, Simferopol, 295007



I. S. Mironyuk
Vernadsky Crimean Federal University
Russian Federation

Irina S. Mironyuk — Cand. Sci. (Biology), Assoc. Prof., Department of Human and Animal Physiology and Biophysics, Institute of Biochemical Technologies, Ecology and Pharmacy

Akademika Vernadskogo Ave., 4, Simferopol, 295007



M. Yu. Ravaeva
Vernadsky Crimean Federal University
Russian Federation

Marina Yu. Ravaeva — Cand. Sci. (Biology), Assoc. Prof., Department of Human and Animal Physiology and Biophysics, Institute of Biochemical Technologies, Ecology and Pharmacy

Akademika Vernadskogo Ave., 4, Simferopol, 295007



A. M. Kulichenko
Vernadsky Crimean Federal University

Alexander M. Kulichenko — Cand. Sci. (Biology), Senior Researcher, Shared-Use Center of Experimental Physiology and Biophysics, Department of Human and Animal Physiology and Biophysics, Institute of Biochemical Technologies, Ecology and Pharmacy

Akademika Vernadskogo Ave., 4, Simferopol, 295007



D. K. Kontareva
Vernadsky Crimean Federal University
Russian Federation

Daria K. Kontareva — Student, Institute of Biochemical Technologies, Ecology and Pharmacy

Akademika Vernadskogo Ave., 4, Simferopol, 295007



References

1. Fedorovich AA. The microvascular bed of human skin as an object of research. Regionarnoe Krovoobrashchenie i Mikrocirkulyaciya. 2017;16(4):11–26 (In Russ.). https://doi.org/10.24884/1682-6655-2017-16-4-11-26

2. Litvitsky PF. Disorders of regional blood flow and microcirculation. Regionarnoe Krovoobrashchenie i Mikrocirkulyaciya. 2020;19(1):82. https://doi.org/10.24884/1682-6655-2020-19-1-82-92

3. Strain WD, Paldánius PM. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol. 2018;17(1):1–10 (In Russ.). https://doi:10.1186/s12933-018-0703-2

4. Sena CM, Gonçalves L, Seiça R. Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine. EPMA J. 2022;13(2):209–235. https://doi.org/10.1007/s13167-022-00280-7

5. Jzerman RG, de Jongh RT, Beijk MA, van Weissenbruch MM, Delemarre-van de Waal HA, Serné EH, Stehouwer CD. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur J Clin Investigation. 2003;33(7):536–542. https://doi.org/10.1046/j.1365-2362.2003.01179.x

6. Sorelli M, Francia P, Bocchi L, de Bellis A, and Anichini R. Assessment of cutaneous microcirculation by laser Doppler flowmetry in type 1 diabetes. Microvasc Res. 2019;124:91–96. https://doi.org/10.1016/j.mvr.2019.04.002

7. Kruger A, Stewart J, Sahityani R, O’Riordan E, Thompson C, Adler S, Garrick R, Vallance P, Goligorsky MS. Laser Doppler flowmetry detection of endothelial dysfunction in end-stage renal disease patients: correlation with cardiovascular risk. Kidney Int. 2006;70(1):157–164. https://doi.org/10.1038/sj.ki.5001511

8. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The human microcirculation: Regulation of flow and beyond. Circulation Res. 2016;118(1):157–172. https://doi.org/10.1161/CIRCRESAHA.115.305364

9. Andreieva IO, Riznyk, OI, Myrnyi, SP, Surmylo, NN. State of cutaneous microcirculation in patients with obesity. Wiadomosci Lek. 2021;74(9): 2039–2043. https://doi.org/10.36740/wlek202109103

10. Dunaev AV Method and device for assessing the functional state of microcirculatory and tissue systems of the human body based on multiparametric optical diagnostics. Izv. vuzov Rossii. Radioelektronika. 2020;23(4):77–91 (In Russ.). https://doi.org/10.32603/1993-8985-2020-23-4-77-91

11. Sidorov VV, Rybakov YuL, Gukasov VM, Yevtushenko GS. A system of local analyzers for noninvasive diagnostics of the general condition of compartments of the microcirculatory tissue system of human skin. Medicinskaya Tekhnika. 2021;6(330):4–6 (In Russ.).

12. Dremin V, Kozlov I, Volkov M, Margaryants N, Potemkin A, Zherebtsov E, Dunaev A, Gurov I. Dynamic evaluation of blood flow microcirculation by combined use of the laser Doppler flowmetry and high-speed videocapillaroscopy methods. J Biophotonics. 2019;12(6):e201800317. https://doi.org/10.1002/jbio.201800317

13. Kralj L, Lenasi H. Wavelet analysis of laser Doppler microcirculatory signals: Current applications and limitations. Frontiers in Physiology. 2023;70(3):1–15. https://doi.org/10.3389/fphys.2022.1076445

14. Chuyan EN, Tribrat NS, Ravaeva MYu. Tissue microhemodynamics: the effect of low-intensity electromagnetic radiation in the millimeter range: monograph. Simferopol. IT «ARIAL».2017;422 (In Russ.) https://doi.org/10.18127/j20700997-202401-03

15. Khalyavkina IO. Typological features of the reactivity of the cardiovascular system in young men with different types of hemodynamics. Zhurnal Fundamental’noj Mediciny i Biologii. 2016;4:36–45 (In Russ.).

16. Tikhomirova IA, Baboshina NV, Terekhin SS. The possibilities of the laser Doppler flowmetry method in assessing the age-related features of the functioning of the microcirculation system. Regionarnoe Krovoobrashchenie i Mikrocirkulyaciya. 2018;3(67):80–86 (In Russ.). https://doi.org/10.24884/1682-6655-2018-17-3-80-86

17. Dolganova TI, Shchudlo NA, Shikhaleva NG, Kostin VV. Morphophysiological characteristics of skin microcirculation types in patients with Dupuytren contracture. Regionarnoe Krovoobrashchenie i Mikrocirkulyaciya. 2018;17(4):24–32 (In Russ.). https://doi.org/10.24884/1682-6655-2018-17-4-24-32

18. Alikova SK, Ranyuk LG, Burduli NM, Tadtaeva DYa. Hemodynamic types of microcirculation and laser therapy in chronic pancreatitis in combination with metabolic syndrome. Terapiya. 2019;3:60–66 (In Russ.). https://doi.org/10.18565/therapy.2019.3.60-66

19. Nguyen CD, Sheikh R, Dahlstrand U, Lindstedt S, Malmsjö M. Investigation of blood perfusion by laser speckle contrast imaging in stretched and rotated skin flaps in a porcine model. J Plast Reconstr Aesthet Surg. 2018;71(4):611–613. https://doi.org/10.1016/j.bjps.2017.08.030

20. McGorum BC, Milne A.J., Tremaine W.H., Sturgeon B.P., McLaren M., Khan F. Evaluation of a combined laser Doppler flowmetry and iontophoresis technique for the assessment of equine cutaneous microvascular function. Equine Vet J. 2002;34(7):732–736. https://doi.org/10.2746/042516402776250289

21. Sixtus RP, Berry MJ, Gray CL, Dyson RM. A novel whole-body thermal stress test for monitoring cardiovascular responses in guinea pigs. J Therm Biol. 2023;113:103500. https://doi.org/10.1016/j.jtherbio.2023.103500

22. Song Y, Nagaoka T, Yoshioka T, Nakabayashi S, Tani T, Yoshida A. Role of Glial Cells in Regulating Retinal Blood Flow During Flicker-Induced Hyperemia in Cats. Invest Ophthalmol Vis Sci. 2015;56(12):7551–7559. https://doi.org/10.1167/iovs.15-17676

23. Savina Y, Duflot T, Bounoure F, Kotzki S, Thiebaut PA, Serreau PA, Skiba M, Picquenot JM, Cornic M, Morisseau C, Hammock B, Imbert L, Cracowski JL, Richard V, Roustit M, Bellien J. Impact of the acute local inhibition of soluble epoxide hydrolase on diabetic skin microcirculatory dysfunction. Diab Vasc Dis Res. 2019;16(6):523–529. https://doi.org/10.1177/1479164119860215

24. Humeau A, Koпtka A, Abraham P. Time-frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anaesthetized healthy rats. Phys Med Biol. 2004;49(5):843–857. https://doi.org/10.1088/0031-9155/49/5/014

25. Newman JM, Dwyer RM, St-Pierre P, Richards SM, Clark MG, Rattigan S. Decreased microvascular vasomotion and myogenic response in rat skeletal muscle in association with acute insulin resistance. J Physiol. 2009;587(11):2579–2588. https://doi.org/10.1113/jphysiol.2009.169011

26. Yuan X, Wu Q, Shang F, Li B, Liu M, Wang B, Sheng Y, Zhang H, Xiu RA comparison of the cutaneous microvascular properites of the spontaneously hypertensive and the Wistar-Kyoto rats by spectral analysis of laser Doppler. Clin Exp Hypertens. 2019;41(4):342–352. https://doi.org/10.1080/10641963.2018.1481424

27. Wei Y, Chen H, Chi Q, He Y, Mu L, Liu C, Lu Y. Synchronized research on endothelial dysfunction and microcirculation structure in dorsal skin of rats with type 2 diabetes mellitus. Med Biol Eng Comput. 2021;59(5):1151–1166. https://doi.org/doi:10.1007/s11517-021-02363-5

28. Ravaeva MYu, Chuyan EN, Mironyuk IS, Cheretaev IV, Grishina TV. Indicators of tissue microhemodynamics of rats under the action of acetylsalicylic acid and its complex compounds with metals. Journal evol bioh physiol. 2021;57(1):71–82. https://doi.org/10.31857/S0044452921010083

29. Ravaeva MYu, Cheretaev IV, Chuyan EN, Galenko-Yaroshevsky PA, Dzheldubaeva ER, Mironyuk IS. Tissue oxidative metabolism and microhemodynamics of the skin in rats exposed to stress factors of different duration and their combinations. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(4):125–132. https://doi.org/10.17816/RCF609553

30. Andreeva IV, Vinogradov AA, Telia VD, Grigoriev AS. Indicators of microcirculation in the skin of the abdomen of rats of different sexes and ages during a food stress test. Krymskij Zhurnal Eksperimental’noj i Tekhnicheskoj Mediciny. 2022;14(1):15–20. https://doi.org/10.24884/1682-6655-2022-21-1-71-77

31. Prakash A. Wavelet and its applications. international journal of scientific research in computer science. Engineering and Information Technology. 2018;3:95–104. https://doi.org/10.32628/CSEIT183820.

32. Krupatkin AI. Fluctuations of blood flow — a new diagnostic language in the study of microcirculation. Regionarnoe Krovoobrashchenie i Mikrocirkulyaciya. 2014;13(1):83–99.

33. Smirni S, McNeilly AD, MacDonald MP, McCrimmon RJ, Khan F. In-vivo correlations between skin metabolic oscillations and vasomotion in wild-type mice and in a model of oxidative stress. Sci Rep. 2019;9(1):186. https://doi.org/10.1038/s41598-018-36970-4

34. Silva H, Šorli J, Lenasi H. Oral glucose load and human cutaneous microcirculation: An insight into flowmotion assessed by wavelet transform. Biology. 2021;10(10):1–17. https://doi.org/10.3390/biology10100953

35. Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev. 2016;274:307–329. https://doi.org/10.1111/imr.12479

36. Nellore K, Harris NR, Nitric oxide measurements in rat mesentry reveal disrupted venulo-arteriolar communication in diabetes. Microcic. 2004;11:415–423 https://doi.org/10.1080/10739680490457809.

37. Goodwill AG, Frisbee JC. Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome. Vasc Pharmacol. 2012;57:150–159. https://doi.org/10.1016/j.vph.2012.07.002

38. Smillie SJ, Brain SD. Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neuropeptides. 2011;45:93–104. https://doi.org/10.1016/j.npep.2010.12.002

39. Marziano C, Hong K, Cope EL., Kotlikoff MI, Isakson BE, Sonkusare SK. Nitric oxide-dependent feedback loop regulates transient receptor potential vanilloid 4 (TRPV4) channel cooperativity and endothelial function in small pulmonary arteries. J Am Heart Assoc. 2017;6(12):e007157. https://doi.org/10.1161/JAHA.117.007157

40. Jackson WF. Myogenic tone in peripheral resistance arteries and arterioles: The pressure is on. Front Physiology.2021;12:699517–699699. https://doi.org/10.3389/fphys.2021.699517

41. Mizeva I, Potapova E, Dremin V, Kozlov I, Dunaev A. Spatial heterogeneity of cutaneous blood flow respiratory-related oscillations quantified via laser speckle contrast imaging. PLoS ONE.2021;16:1–15. https://doi.org/10.1371/journal.pone.0252296

42.


Supplementary files

Review

For citations:


Chuyan E.N., Liventsov S.Yu., Mironyuk I.S., Ravaeva M.Yu., Kulichenko A.M., Kontareva D.K. Hemodynamic types of cutaneous microcirculation in rats: A selective experimental study. Kuban Scientific Medical Bulletin. 2024;31(6):40-55. (In Russ.) https://doi.org/10.25207/1608-6228-2024-31-6-40-55

Views: 1012


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-6228 (Print)
ISSN 2541-9544 (Online)