CARDIOPRODUCTIVE EFFECTS OF EXXENATE AMID AND VILDAGLIPTIN INCRETIN MIMETICS IN DOXYRUBRICINE CARDIOMYOPATHY MODELING
https://doi.org/10.25207/1608-6228-2017-24-3-100-105
Abstract
Aim. To study the cardioprotective effects of exenatide and vildagliptin on the doxorubicin model of cardiomyopathy.
Material and methods. In the experiments at the isolated the Langendorff heart of the rat, the cardioprotective effect of exenatide (10 μg/kg/day) (Baeta®, Eli Lilly and Company, USA) and vildagliptin (0.2 mg/kg/day) (Galvus®, Novartis, Switzerland), on the contractile function of an isolated heart that underwent anterior doxorubicin (20 mg/kg, intraperitoneally for 48 hours) pathology was evaluated. Cardioprotective effect was assessed by the results of a functional test with highfrequency stimulation (480 bpm) under conditions of hypercalcium (5 mmol) perfusion.
Results. The results show that the exenatide (10 μg/kg/day) and vildagliptin (0.2 mg/kg/day) incretin mimetics show a cardioprotective effect on the doxyrubicin pathology model, which is expressed in a decrease in the coefficient of diastolic dysfunction (StTTI), respectively, to 5.3±0.1 cu and 6.5±0.2 cu compared with the control group 8.3±0.1 cu.
Conclusion. An assumption is made about the way of realization of the cardioprotective effect of incretin mimetics by increasing the expression of gem-oxygenase-1 (HO-1). This prevents the heme-catalyzed formation of highly active hydroxyl radicals from hydrogen peroxide. Induction of heme oxygenase-1 is accompanied by an increase in ferritin activity, which has an antiapoptotic effect due to the fact that ferritin binds excess free iron in cells subjected to oxidative stress.
About the Authors
A. P. TARASOVАRussian Federation
Belgorod, Russian Federation, Pobedy St. 85, 308015; tel.: 8-910-325-76-95
A. V. KHAVANSKY
Russian Federation
Belgorod, Russian Federation, Pobedy St. 85, 308015; tel.: 8-910-325-76-95
A. S. TIMOKHINA
Russian Federation
Belgorod, Russian Federation, Pobedy St. 85, 308015; tel.: 8-910-325-76-95
A. P. DOVGAN
Russian Federation
Belgorod, Russian Federation, Pobedy St. 85, 308015; tel.: 8-910-325-76-95
D. A. KOSTINA
Russian Federation
Belgorod, Russian Federation, Pobedy St. 85, 308015; tel.: 8-910-325-76-95
L. N. SERNOV
Russian Federation
Belgorod, Russian Federation, Pobedy St. 85, 308015; tel.: 8-910-325-76-95
References
1. Vlasov T.D., Simanenkova A.V., Dora S.V., Shlyakhto E.V. Mechanisms of neuroprotective action of incretin mimetics. Cardiology. Diabetes Mellitus. 2016, 19: 66–23. (In Russ., English abstract).
2. Trunina E.N., Petunina N.A., Chorbinskaja S.A. Dipeptidylpeptidase-4 inhibitors in the treatment of diabetes mellitus. Possibilities of cardioprotection. Cardiology. Diabetes Mellitus. 2011; 2: 59–64. (In Russ., English abstract).
3. Tuchina T .P., Zykov V.A., Babenko A.Ju., Krylova I.B., Lebedev D.A. Evaluation of cardioprotective effect of glucagon-like peptide- 1 analog in experiment. Sovremennaja medicina: aktual'nye voprosy. 2014; 37: 11–19. (In Russ., English abstract).
4. Tyurenkov I.N., Bakulin D.A., Kurkin D.V., Volotova E.V. Cardiovascular Effects of Incretin-Based Therapies and Their Therapeutic Potential. Annals of the Russian academy of medical sciences. 2017; 72(1): 66-75. (In Russ.) DOI:10.15690/vramn732
5. Ban K., Noyan-Ashraf M.H., Hoefer J.et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Int J Cardiol. 2008; 118(4): 2340-50. DOI:10.1161/circulationaha.107.739938.
6. Nikolaidi L.A., Doverspike A., Hentosz T. et al. Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther. 2005; 312 : 303-308.
7. Spasov A.A., Chepljaeva N.I. Potencial farmakologicheskoj moduljacii urovnja i aktivnosti inkretinov pri saharnom diabete tipa 2. Biomedicinskaja himija. 2015; 61: 488–496. (In Russ.)
8. Liu Q., Anderson C., Broyde A. et al Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovascular diabetology. 2010; 9:79. DOI:10.1186/1475-2840-9-76.
9. Luconi M., Cantini G., Ceriello A. et al. Perspectives on cardiovascular effects of incretin-based drugs: From bedside to bench, return trip. Int J Cardiol. 2017; 117(18): 341–343. DOI: 10.1016/j.ijcard.2017.02.126.
10. Hull T.D., Boddu R., Guo L. et al. Heme oxygenase-1 regulates mitochondrial quality control in the heart. Cardiology. 2016; 1(2): 378–383. DOI:10.1172/jci.insight.85817.
11. Lonborg J., Vejlstrup N., Kelbaek H. et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. European heart journal. 2012; 33(12): 1491-1499. DOI:10.1093/eurheartj/ehr309
12. Nikolaidis L.A., Elahi D., Hentosz T., Doverspike A. et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004; 110: 955–961. DOI:org/10.1161/01.cir.0000139339.85840.dd
13. Ichikawa Y. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014; 124(2): 617–630. DOI:10.1152/ajpheart.00554.2015.
14. Kuznetsov A.V., Margreiter R., Amberger A., Saks V. et al. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta. 2011; 1813(6):1144–1152. DOI:10.1152/ajpheart.00554
15. Kesarev O.G, Danilenko L.M., Pokrovskii M.V. et al. Study ofdose-dependent effect of 2-ethyl-6-methyl-3 hydroxypyridine succinate on the contractile function of isolated rat heat. Research result: pharmacology and clinical pharmacology. 2017; 3: 3-9. DOI:10.18413/2500-235X-2017-3-1-3-9.
16. Fogli S., Nieri S., Breschi M.C The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage. Faseb J. 2004; 18 (6): 664-675. DOI:10.1096/fj.03-0724rev
17. Hrdina R., Gersl V., Klimtova I. et. al. Anthracycline-induced cardiotoxicity. ActaMedica (Hradec Kralove). 2000; 43(3): 75-82.
18. Keizer H.G., Pinedo H.M., Schuurhuis G.J. et. al. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. PharmacolTher. 2000; 47 (2): 219-231.
19. Skachilova S.Ja., Kesarev O.G., Danilenko L.M. Farmakologicheskaja zashhita ishemizirovannogo miokarda proizvodnymi 3-(2,2,2-trimetilgidrazinija) propionata i ocenka ih antioksidantnoj aktivnosti. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Serija: Medicina. Farmacija. 2015; 1: 25-31. (In Russ.)
20. Skachilova S.Y., Kesarev O.G., Danilenko L.M. et al. Pharmacological correction of L-NAME-induced oxide deficiency with derivatives of 3-(2,2,2- trimethylhydrazinium) propionate. Research result: pharmacology and clinical pharmacology. 2016; 2: 36-41. Doi:10.18413/23/13-8971-2016-2-1-36-41.
21. Noyan-Ashraf M.H., Momen M.A., Ban K et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009; 58(4): 975–983. DOI:10.2337/db08-1193
22. Read P.A., Khan F.Z., Dutka D.P. Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide- 1 in patients with coronary artery disease. Heart. 2012; 98(5): 408-413.DOI: 10.1136/hrt.2010.219345.
23. Vives-Bauza C. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010; 107(1):378–383. DOI:10.1073/pnas.0911187107.
Review
For citations:
TARASOVА A.P., KHAVANSKY A.V., TIMOKHINA A.S., DOVGAN A.P., KOSTINA D.A., SERNOV L.N. CARDIOPRODUCTIVE EFFECTS OF EXXENATE AMID AND VILDAGLIPTIN INCRETIN MIMETICS IN DOXYRUBRICINE CARDIOMYOPATHY MODELING. Kuban Scientific Medical Bulletin. 2017;(3):100-105. (In Russ.) https://doi.org/10.25207/1608-6228-2017-24-3-100-105