RISK FACTORS OF FRACTURE NONUNION IN POLYTRAUMA
https://doi.org/10.25207/1608-6228-2017-24-6-168-176
Abstract
Aim. To carry out literature analysis devoted to pathological mechanisms of delayed union and nonunion of limb fractures and the influence of various osteosynthesis strategies on bone healing in polytrauma. The risk of bone fractures nonunion in polytrauma increases with high-energy complex comminuted and open fractures with severe injuries of soft tissues and bones, bruised lung, shock and severe massive blood loss. The development of a systemic inflammatory response affects local immune responses in the fracture zone to the early inflammatory phase of bone healing and disrupts subsequent osteogenesis and angiogenesis processes. Early stable-functional osteosynthesis using minimally invasive techniques creates optimal conditions for bone healing. When following the tactics of the stepwise treatment of Damage Control Orthopedics, the risk of infectious complications and fracture nonunion increases with the duration of treatment in the apparatus of external fixation. Conclusion. In polytrauma a violation of consolidation of bone fractures of the extremities occurs more often than in isolated trauma. Risk factors of fracture nonunion in polytrauma are the severity of bone and soft tissue damage, shock, acute blood loss and systemic inflammatory response, as well as unjustified delay in the final stable fixation of long bones fragments or using traumatic methods of their early osteosynthesis without taking into account the severity of the condition of the injured.
About the Authors
YU. G. SHAPKINRussian Federation
P. A. SELIVERSTOV
Russian Federation
References
1. Pfeifer R., Pape H.C. Diagnostics and treatment strategies for multiple trauma patients. Chirurg. 2016; 87(2): 165-175. DOI: 10.1007/s00104-015-0139-0.
2. Соколов В.А. Множественные и сочетанные травмы. М.: ГЭОТАР-Медиа, 2006. 512 с. [Sokolov V.A. Mnozhestvennye i sochetannye travmy. M.: GEOTAR-Media, 2006. 512 p. (In Russ.)].
3. Бондаренко А.В., Герасимова О.А., Лукьянов В.В. и др. Состав, структура повреждений, летальность и особенности оказания помощи у пострадавших на этапах лечения политравмы. Политравма. 2014; 1: 15-28. [Bondarenko A.V. Gerasimova O.A. Lukyanov V.V. Timofeev V.V. Kruglykhin I.V. Composition, structure of injuries, mortality and features of rendering assistance for patients during treatment of polytrauma. Polytrauma. 2014; 1: 15-28. (In Russ., English abstract)].
4. Назаров Х.Н., Линник С.А., Мусоев Д.С., Мирзоев Р.Р. Частота, профилактика и лечение ложных суставов у пострадавших с сочетанными и множественными травмами нижних конечностей. Вестник Академии медицинских наук Таджикистана. 2016; 4: 63-69. [Nazarov Kh.N., Linnik S.A., Musoev D.S., Mirzoev R.R. Chastota, profilaktika i lechenie lozhnykh sustavov u postradavshikh s sochetannymi i mnozhestvennymi travmami nizhnikh konechnostey. Vestnik Akademii meditsinskikh nauk Tadzhikistana. 2016; 4: 63-69. (In Russ.)].
5. Metsemakers W.J., Handojo K., Reynders P., Sermon A., Vanderschot P., Nijs S. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients. Injury. 2015; 46(4): 740-745. DOI: 10.1016/j.injury.2014.12.018.
6. Šmejkal K., Lochman P., Trlica J., Novotný P., Šimek J., Dědek T. Impaired healing after surgery for femoral fractures. Acta Chir. Orthop. Traumatol. Cech. 2015; 82(5): 358-363.
7. Märdian S., Rau D., Schwabe P., Tsitsilonis S., Simon P. Operative therapy of fractures of the distal femur. Predictive factors for a complicated course. Orthopade. 2016; 45(1): 32-37. DOI: 10.1007/s00132-015-3200-2.
8. Metsemakers W.J., Roels N., Belmans A., Reynders P., Nijs S. Risk factors for nonunion after intramedullary nailing of femoral shaft fractures: Remaining controversies. Injury. 2015; 46(8): 1601- 1607. DOI: 10.1016/j.injury.2015.05.007.
9. Chua W., Murphy D., Siow W., Kagda F., Thambiah J. Epidemiological analysis of outcomes in 323 open tibial diaphyseal fractures: a nine-year experience. Singapore Med. J. 2012; 53(6): 385-389.
10. Banerjee M., Bouillon B., Shafizadeh S., Paffrath T., Lefering R., Wafaisade A. Epidemiology of extremity injuries in multiple trauma patients. Injury. 2013; 44(8): 1015-1021. DOI: 10.1016/j. injury.2012.12.007.
11. Court-Brown C.M., Bugler K.E., Clement N.D., Duckworth A.D., McQueen M.M. The epidemiology of open fractures in adults. A 15-year review. Injury. 2012; 43(6): 891-897. DOI: 10.1016/j.injury.2011.12.007.
12. Дулаев А.К., Цед А.Н., Бобрин М.И. и др. Применение интрамедуллярного блокированного остеосинтеза у пострадавших с открытыми переломами голени и бедра при сочетанных повреждениях. Вестник хирургии им. И.И. Грекова. 2012; 171(4): 49-54. [Dulaev A.K., Tsed A.N., Bobrin M.I., Refitsky Yu.V., Khodin A.I., Dzhusoev I.G., Chikin A.E. Application of intramedullary blocked osteosynthesis for treatment of patients with open fractures of the shin and femur in combined injuries. Journal of Surgery named after I.I. Grekov. 2012; 171(4): 49-54. (In Russ., English abstract)].
13. Chen A.T., Vallier H.A. Noncontiguous and open fractures of the lower extremity: Epidemiology, complications, and unplanned procedures. Injury. 2016; 47(3): 742-747. DOI: 10.1016/j.injury.2015.12.013.
14. Hoff P., Gaber T., Strehl C., Schmidt-Bleek K., Lang A., Huscher D., Burmester G.R., Schmidmaier G., Perka C., Duda G.N., Buttgereit F. Immunological characterization of the early human fracture hematoma. Immunol. Res. 2016; 64(5-6): 1195-1206.
15. Horst K., Eschbach D., Pfeifer R., Hübenthal S., Sassen M. , Steinfeldt T., Wulf H., Ruchholtz S., Pape H.C., Hildebrand F. Local inflammation in fracture hematoma: results from a combined trauma model in pigs. Mediators Inflamm. 2015; 2015: 126060. DOI: 10.1155/2015/126060.
16. Ghiasi M.S., Chen J., Vaziri A., Rodriguez E.K., Nazarian A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep. 2017; 6: 87-100. DOI: 10.1016/j.bonr.2017.03.002.
17. Hildebrand F., van Griensven M., Huber-Lang M., Flohe S.B., Andruszkow H., Marzi I., Pape H.C. Is there an impact of concomitant injuries and timing of fixation of major fractures on fracture healing? А focused review of clinical and experimental evidence. J. Orthop. Trauma. 2016; 30(3): 104-112. DOI: 10.1097/ BOT.0000000000000489.
18. Bumann M., Henke T., Gerngross H., Claes L., Augat P. Influence of haemorrhagic shock on fracture healing. Langenbecks Arch. Surg. 2003; 388(5): 331-338.
19. Lu C., Saless N., Wang X., Sinha A., Decker S., Kazakia G., Hou H., Williams B., Swartz H.M., Hunt T.K., Miclau T., Marcucio R.S. The role of oxygen during fracture healing. Bone. 2013; 52(1): 220-229. DOI: 10.1016/j.bone.2012.09.037.
20. Грубер Н.М., Валеев Е.К., Шульман А.А., Яфарова Г.Г. Патогенетические механизмы репаративного остеогенеза при сочетанной травме. Практическая медицина. 2016; 1(4): 79-81. [Gruber N.M., Valeev E.K., Shul'man A.A., Yafarova G.G. Pathogenetic mechanisms of reparative osteogenesis after combined trauma. Practical medicine. 2016; 1(4): 79-81. (In Russ., English abstract)].
21. Neunaber C., Yesilkaya P., Pütz C., Krettek C., Hildebrand F. Differentiation of osteoprogenitor cells is affected by trauma-haemorrhage. Injury. 2013; 44(10): 1279-1284. DOI: 10.1016/j.injury.2013.05.011.
22. Starr A.J., Welch R.D., Eastridge B.J., Pierce W., Zhang H. The effect of hemorrhagic shock in a caprine tibial fracture model. J. Orthop. Trauma. 2002; 16(4): 250-256.
23. Lucas T.S., Bab I.A., Lian J.B., Stein G.S., Jazrawi L., Majeska R.J., Attar-Namdar M., Einhorn T.A. Stimulation of systemic bone formation induced by experimental blood loss. Clin. Orthop. Relat. Res. 1997; (340): 267-275.
24. Bastian O.W., Kuijer A., Koenderman L., Stellato R.K., van Solinge W.W., Leenen L.P., Blokhuis T.J. Impaired bone healing in multitrauma patients is associated with altered leukocyte kinetics after major trauma. J. Inflamm. Res. 2016; 18(9): 69-78. DOI: 10.2147/JIR.S101064.
25. Sandberg O.H., Tätting L., Bernhardsson M.E., Aspenberg P. Temporal role of macrophages in cancellous bone healing. Bone. 2017; 101: 129-133. DOI: 10.1016/j.bone.2017.04.004.
26. Reinke S., Geissler S., Taylor W.R., Schmidt-Bleek K., Juelke K., Schwachmeyer V., Dahne M., Hartwig T., Akyüz L., Meisel C., Unterwalder N., Singh N.B., Reinke P., Haas N.P., Volk H.D., Duda G.N. Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci Transl. Med. 2013; 5(177): 177ra36. DOI: 10.1126/scitranslmed.3004754.
27. Kovtun A., Bergdolt S., Wiegner R., Radermacher P., Huber-Lang M., Ignatius A. The crucial role of neutrophil granulocytes in bone fracture healing. Eur. Cell. Mater. 2016; (32): 152-162.
28. Lichte P., Kobbe P., Pfeifer R., Campbell G.C., Beckmann R., Tohidnezhad M., Bergmann C., Kadyrov M., Fischer H., Glüer C.C., Hildebrand F., Pape H.C., Pufe T. Impaired fracture healing after hemorrhagic shock. Mediators Inflamm. 2015; 2015: 132451. DOI: 10.1155/2015/132451.
29. Бочаров С.Н., Кулинский В.И., Лебедь М.Л. и др. Состояние системы глутатиона внутренних органов в условиях множественной скелетной травмы в эксперименте. Фундаментальные исследования. 2014; (10-1): 32-36. [Bocharov S.N., Kulinskij V.I., Lebed' M.L., Kirpichenko M.G., Gumanenko V.V., Bahtairova V.I., Bulavinceva O.A., Egorova I.Je., Kolesnichenko L.S., Leonova Z.A., Suslova A.I., Jas'ko M.V., Lepehova S.A., Rodionova L.V., Kinash I.N. Glutathione system of internal organs in the presence of multiple skeletal trauma in experiment. Fundamental research. 2014; (10-1): 32-36. (In Russ., English abstract)].
30. Ilyas A., Odatsu T., Shah A., Monte F., Kim H.K., Kramer P., Aswath P.B., Varanasi V.G. Amorphous silica: a new antioxidant role for rapid critical-sized bone defect healing. Adv. Healthc. Mater. 2016; 5(17): 2199-2213. DOI: 10.1002/adhm.201600203.
31. Binder H., Eipeldauer S., Gregori M., Höchtl-Lee L., Thomas A., Tiefenboeck T.M., Hajdu S., Sarahrudi K. The difference between growth factor expression after single and multiple fractures: preliminary results in human fracture healing. Dis. Markers. 2015; 2015: 203136. DOI: 10.1155/2015/203136.
32. Seitz D.H., Perl M., Liener U.C., Tauchmann B., Braumüller S.T., Brückner U.B. Gebhard F., Knöferl M.W. Inflammatory alterations in a novel combination model of blunt chest trauma and hemorrhagic shock. J. Trauma. 2011; 70(1): 189-196. DOI: 10.1097/ TA.0b013e3181d7693c.
33. Weckbach S., Hohmann C., Braumueller S., Denk S., Klohs B., Stahel P.F., Gebhard F., Huber-Lang M.S., Perl M. Inflammatory and apoptotic alterations in serum and injured tissue after experimental polytrauma in mice: distinct early response compared with single trauma or "double-hit" injury. J. Trauma Acute Care Surg. 2013; 74(2): 489-498. DOI: 10.1097/TA.0b013e31827d5f1b.
34. Recknagel S., Bindl R., Brochhausen C., Göckelmann M., Wehner T., Schoengraf P., Huber-Lang M., Claes L., Ignatius A. Systemic inflammation induced by a thoracic trauma alters the cellular composition of the early fracture callus. J. Trauma Acute Care Surg. 2013; 74(2): 531-537. DOI: 10.1097/TA.0b013e318278956d.
35. Recknagel S., Bindl R., Kurz J., Wehner T., Ehrnthaller C., Knöferl M.W., Gebhard F., Huber-Lang M., Claes L., Ignatius A. Experimental blunt chest trauma impairs fracture healing in rats. J. Orthop. Res. 2011; 29(5): 734-739. DOI: 10.1002/jor.21299.
36. Kemmler J., Bindl R., McCook O., Wagner F., Gröger M., Wagner K., Scheuerle A., Radermacher P., Ignatius A. Exposure to 100% oxygen abolishes the impairment of fracture healing after thoracic trauma. PLoS One. 2015; 10(7): e0131194. DOI: 10.1371/ journal.pone.0131194.
37. Recknagel S., Bindl R., Kurz J., Wehner T., Schoengraf P., Ehrnthaller C., Qu H., Gebhard F., Huber-Lang M., Lambris J.D., Claes L., Ignatius A. C5aR-antagonist significantly reduces the deleterious effect of a blunt chest trauma on fracture healing. J. Orthop. Res. 2012; 30(4): 581-586. DOI: 10.1002/jor.21561.
38. Gan L., Chen X., Sun T., Li Q., Zhang R., Zhang J., Zhong J. Significance of serum mtDNA concentration in lung injury induced by hip fracture. Shock. 2015; 44(1): 52-57. DOI: 10.1097/ SHK.0000000000000366.
39. Kobbe P., Vodovotz Y., Kaczorowski D.J., Billiar T.R., Pape H.C. The role of fracture-associated soft tissue injury in the induction of systemic inflammation and remote organ dysfunction after bilateral femur fracture. J. Orthop. Trauma. 2008; 22(6): 385-390. DOI: 10.1097/BOT.0b013e318175dd88.
40. Claes L., Ignatius A., Lechner R., Gebhard F., Kraus M., Baumgärtel S., Recknagel S., Krischak G.D. The effect of both a thoracic trauma and a soft-tissue trauma on fracture healing in a rat model. Acta Orthop. 2011; 82(2): 223-227. DOI: 10.3109/17453674.2011.570677.
41. Vallier H.A., Super D.M., Moore T.A., Wilber J.H. Do patients with multiple system injury benefit from early fixation of unstable axial fractures? The effects of timing of surgery on initial hospital course. J. Orthop. Trauma. 2013; 27(7): 405-412. DOI: 10.1097/ BOT.0b013e3182820eba.
42. Nicola R. Early total care versus damage control: current concepts in the orthopedic care of polytrauma patients. ISRN Orthop. 2013; 2013: 329452. DOI: 10.1155/2013/329452.
43. Stanisław B.W., Bogusław G.E. Management of open fractures of the tibial shaft in multiple trauma. Indian J. Orthop. 2008; 42(4): 395-400. DOI: 10.4103/0019-5413.43378.
44. Rodriguez-Merchan E.C., Moraleda L., Gomez-Cardero P. Injuries associated with femoral shaft fractures with special emphasis on occult injuries. Arch. Bone Jt. Surg. 2013; 1(2): 59-63.
45. Kim J.W., Oh C.W., Jung W.J., Kim J.S. Minimally invasive plate osteosynthesis for open fractures of the proximal tibia. Clin. Orthop. Surg. 2012; 4(4): 313-320. DOI: 10.4055/cios.2012.4.4.313.
46. Лернер А.А., Фоменко М.В., Ротем Д. и др. Orthopaedic damage control при лечении тяжелых боевых повреждений ко- нечностей. Политравма. 2015; 1: 42-47. [Lerner A.A., Fomenko M.V., Rotem D., Pikkel I., Yulish М., Salamon T. Damage control orthopedics for treatment of severe combat injuries to the limbs. Polytrauma. 2015; 1: 42-47. (In Russ., English abstract)].
47. Sala F., Elbatrawy Y., Thabet A.M., Zayed M., Capitani D. Taylor spatial frame fixation in patients with multiple traumatic injuries: study of 57 long-bone fractures. J. Orthop. Trauma. 2013; 27(8): 442-450. DOI: 10.1097/BOT.0b013e31827cda11.
48. Сироджов К.Х., Холов Д.И., Каримов К.К. Оптимизация лечения открытых переломов бедра у больных с политравмой на основе системного подхода. Практическая медицина. 2015; 5: 145-148. [Sirodzhov K.Kh., Kholov D.I., Karimov K.K. Optimization of treatment of open fractures of the hip in patients with polytrauma based on the systematic approach. Practical medicine. 2015; 5: 145-148. (In Russ., English abstract)].
49. Самусенко Д.В., Карасев А.Г., Мартель И.И. и др. Метод Илизарова в этапном лечении пострадавших с сочетанной травмой и множественными переломами. Политравма. 2014; 1: 44-49. [Samusenko D.V., Karasev A.G., Martel' I.I., Shvedov V.V., Boychuk S.P. Ilizarov technique in staged management of patients with concomitant injuries and multiple fractures. Polytrauma. 2014; 1: 44-49. (In Russ., English abstract)].
50. Kazakos K.J., Verettas D.J., Tilkeridis K., Galanis V.G., Xarchas K.C., Dimitrakopoulou A. External fixation of femoral fractures in multiply injured intensive care unit patients. Acta Orthop. Belg. 2006; 72(1): 39-43.
51. Esan O., Ikem I.C., Oginni L.M., Esan O.T. Comparison of unreamed interlocking nail and external fixation in open tibia shaft fracture management. West. Afr. J. Med. 2014; 33(1): 16-20.
52. Aslan A., Uysal E., Ozmeriç A. A staged surgical treatment outcome of type 3 open tibial fractures. ISRN Orthop. 2014; 2014: 721041. DOI: 10.1155/2014/721041.
53. Bedes L., Bonnevialle P., Ehlinger M., Bertin R., Vandenbusch E., Piétu G. External fixation of distal femoral fractures in adults' multicentre retrospective study of 43 patients. Orthop. Traumatol. Surg. Res. 2014; 100(8): 867-872. DOI: 10.1016/j. otsr.2014.07.024.
54. Lavini F., Carità E., Dall'oca C., Bortolazzi R., Gioia G., Bonometto L., Sandri A., Bartolozzi P. Internal femoral osteosynthesis after external fixation in multiple-trauma patients. Strategies Trauma Limb Reconstr. 2007; 2(1): 35-38. DOI: 10.1007/s11751-007-0012-x.
55. Nowotarski P.J., Turen C.H., Brumback R.J., Scarboro J.M. Conversion of external fixation to intramedullary nailing for fractures of the shaft of the femur in multiply injured patients. J. Bone Joint Surg. Am. 2000; 82(6): 781-788.
56. Sigurdsen U., Reikeras O., Utvag S.E. Conversion of external fixation to definitive intramedullary nailing in experimental tibial fractures. J. Invest. Surg. 2010; 23(3): 142-148. DOI: 10.3109/08941930903564118.
57. Recknagel S., Bindl R., Wehner T., Göckelmann M., Wehrle E., Gebhard F., Huber-Lang M., Claes L., Ignatius A. Conversion from external fixator to intramedullary nail causes a second hit and impairs fracture healing in a severe trauma model. J. Orthop. Res. 2013; 31(3): 465-471. DOI: 10.1002/jor.22242.
58. Xia P.G., Cai X.H., Huang J.F., Xu F., Liu X.M., Wang Q. Retrospective study on staged treatment of long bone shaft fractures with severe thoracic trauma. Zhongguo Gu Shang. 2011; 4(8): 684-686.
59. Roussignol X., Sigonney G., Potage D., Etienne M., Duparc F., Dujardin F. Secondary nailing after external fixation for tibial shaft fracture: risk factors for union and infection. A 55 case series. Orthop. Traumatol. Surg. Res. 2015; 101(1): 89-92. DOI: 10.1016/j. otsr.2014.10.017.
60. Sigurdsen U., Reikeras O., Utvag S.E. The effect of timing of conversion from external fixation to secondary intramedullary nailing in experimental tibial fractures. J. Orthop. Res. 2011; 29(1): 126-130. DOI: 10.1002/jor.21182.
Review
For citations:
SHAPKIN Yu.G., SELIVERSTOV P.A. RISK FACTORS OF FRACTURE NONUNION IN POLYTRAUMA. Kuban Scientific Medical Bulletin. 2017;(6):168-176. (In Russ.) https://doi.org/10.25207/1608-6228-2017-24-6-168-176