PROSPECTS OF THE APPLICATION OF SUPRAMOLECULAR GELS IN EXPERIMENTAL SURGERY
https://doi.org/10.25207/1608-6228-2019-26-3-108-116
Abstract
Aim. To analyse the effect of supramolecular gels on the healing of experimental wounds using the approaches of problem-critical analysis.
Materials. 29 Russian and foreign publications indexed in RSCI (E-library, “Advanced Search” mode), Scopus (“Article title, abstracts, keywords”), Web of Science (basic mode), PubMed (basic search mode), Cochrane (“Article title, abstracts, keywords” mode) databases were analysed.
Results. Generalization of literature data published on the application of supramolecular gels under analysis for wound regeneration and repair was carried out.
Conclusion. Damage to the skin and deeper tissues is an urgent medical problem, which leads to a constant search for means to stimulate the regeneration of wounds. Supramolecular gels are promising compounds, which can be different in terms of chemical composition. These compounds can form and break down under the influence of various chemical and physical factors. Important properties of supramolecular gels involve the ability to perform the transport function for the delivery of biologically active substances to the tissues, as well as their antibacterial effect and wound-healing properties.
About the Authors
Timur M. ValievRussian Federation
PhD student,
Sovetskaya str., 4, Tver, 170000;
tel: +7 (904) 008-97-21
Margarita B. Petrova
Russian Federation
Dr. Sci. (Med.), Prof., Departmental Head, Department of Biology,
Sovetskaya str., 4, Tver, 170000
Evgeny M. Mokhov
Russian Federation
Dr. Sci. (Med.), Prof., Departmental Head, Department of General Surgery,
Sovetskaya str., 4, Tver, 170000
References
1. Kruglova L.S., Panina A.N., Strelkovich T.I. Trophic ulcers of venous genesis. Rossiiskii Zhurnal Kozhnykh i Venericheskikh Boleznei. 2014; 1: 21–25 (In Russ., English abstract).
2. Schetinin S.A. Analysis of the frequency and consequences of accidents in Russia. Sovremennye Problemy Nauki i Obrazovaniya. 2015; 2: 48 (In Russ., English abstract). URL: https://elibrary.ru/download/elibrary_24122881_35956246.pdf
3. Du X., Zhou J., Shi J., Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chemical Reviews. 2015; 115 (24): 13165–13307. DOI: 10.1021/acs.chemrev.5b00299
4. Webber M.J., Appel E.A., Meijer E.W., Langer R. Supramolecular biomaterials. Nat. Mater. 2016; 15(1): 13–26. DOI: 10.1038/nmat4474
5. Zhou J., Li J., Du X., Xu B. Supramolecular biofunctional materials. Biomaterials. 2017; 129: 1–27. DOI: 10.1016/j.biomaterials.2017.03.014
6. Stid Dzh.V., Etvud Dzh.L. Supramolekulyarnaya khimiya [Encyclopedia of Supramolecular Chemistry]. Moscow: IKTs “Akademkniga”; 2007. 479 р. (In Russ.).
7. Ruijiao D., Yongfeng Z., Xiaohua H., Xinyuan Z., Yunfeng L., Jian S. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015; 27: 498–526. DOI: 526 10.1002/adma.201402975
8. Sangeetha N.M., Maitra U. Supramolecular gels: functions and uses. Chem.Soc. Rev. 2005; 34(10): 821–836. DOI: 10.1039/b417081b
9. Pakhomov P.M., Khizhnyak S.D., Ovchinnikov M.M., Komarov P.V. Supramolekulyarnye geli. Tver’: Tverskoi gosudarstvennyi universitet; 2011. 272 р. (In Russ.).
10. Ruijiao D., Yan P., Yue S., Xinyuan Z. Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater. Sci. 2015; 3: 937–954. DOI: 10.1039/c4bm00448e
11. Du X., Zhou J., Xu B. Supramolecular Hydrogels Made of the Basic Biological Building Blocks. Chem. Asian J. 2014; 9(6): 1446–1472. DOI: 10.1002/asia.201301693
12. Аmin M.C., Ahmad N., Pandey M., Abeer M.M., Mohamad N. Recent advances in the role of supramolecular hydrogels in drug delivery. Expert. Opin. Drug Deliv. 2015; 12(7): 1149–1161. DOI: 10.1517/17425247.2015.997707
13. Dawn A., Kumari H. Low molecular weight supramolecular gels under shear: rheology as the tool for elucidating structure-function correlation. Chemistry. 2018; 24(4): 762–776. DOI: 10.1002/chem.201703374
14. Petrova M.B., Pavlova N.V., Kharitonova E.A., Ilyashenko N.V. Reparative histogenesis of skin: Reaction on the application of L-cysteine of argentum nitrate gel. Open J. Regener. Med. 2012; 1(3): 25–28. DOI: 10.4236/ojrm.2012.13004
15. Yang Z., Liang G., Ma M., Abbah A.S., Lu W.W., Xu B. D-glucosamine-based supramolecular hydrogels to improve wound healing. Chem. Commun. (Camb). 2007; 8: 843–845. DOI: 10.1039/b616563j
16. Jiang L., Xu D., Sellati T.J., Dong H. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity. Nanoscale. 2015; 7 (45): 19160–19169. DOI: 10.1039/c5nr05233e
17. Yang Z., Xu K., Wang L., Gu H., Wei H., Zhang M., Xu B. Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds. Chem. Commun. (Camb). 2005; 35: 4414–4416. DOI: 10.1039/b507314f
18. Zhang Z., He T., Yuan M., Shen R., Deng L., Yi L., Sun Z., Zhang Y. The in situ synthesis of Ag/amino acid biopolymer hydrogels as mouldable wound dressings. Chem. Commun. (Camb). 2015; 51(87): 15862–15865. DOI: 10.1039/c5cc05195a
19. Turibius S., Chung-Shu W., Jie-Chuan L., Chieh C., Fu-Hsiang K. Facile synthesis of a biocompatible silver nanoparticle derived tripeptide supramolecular hydrogel for antibacterial wound dressings. New J. Chem. 2016; 3: 2036–2043. DOI: 10.1039/C5NJ01981H
20. Irwansyah I., Li Y.Q., Shi W., Qi D., Leow W.R., Tang M.B., Li S., Chen X. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 2015; 27(4): 648–654. DOI: 10.1002/adma.201403339
21. McCloskey A.P., Gilmore S.M., Zhou J., Draper E.R., Porter S., Gilmore B.F., Xub B., Laverty G. Self-assembling ultrashort NSAID-peptide nanosponges: multifunctional antimicrobial and anti-inflammatory materials. RSC Advances. 2016; 115: 114738–114749. DOI: 10.1039/C6RA20282A
22. Marchesan S., Qu Y., Waddington L.J., Easton C.D., Glattauer V., Lithgow T.J., McLean K.M., Forsythe J.S., Hartley P.G. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials. 2013; 34(14): 3678–3687. DOI: 10.1016/j.biomaterials.2013.01.096
23. Huang J., Wang W., Yu J., Yu X., Zheng Q., Peng F., He Z., Zhao W., Zhang Z., Li X., Wang Q. Combination of dexamethasone and Avastin(®) by supramolecular hydrogel attenuates the inflammatory corneal neovascularization in rat alkali burn model. Colloids Surf. B. Biointerfaces. 2017; 159: 241–250. DOI: 10.1016/j.colsurfb.2017.07.057
24. Shi L., Zhao Y., Xie Q., Fan C., Hilborn J., Dai J., Ossipov D.A. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing. Adv. Health. Mater. 2018; 7(5). DOI: 10.1002/adhm.201700973
25. Champeau M., Póvoa V., Militão L., Cabrini F.M., Picheth G.F., Meneau F., Jara C.P., de Araujo E.P., de Oliveira M.G. Supramolecular poly(acrylic acid)/F127 hydrogel withhydration-controlled nitric oxide release for enhancing wound healing. Acta Biomater. 2018; 74: 312–325. DOI: 10.1016/j.actbio.2018.05.025
26. Xu F., Padhy H., Al-Dossary M., Zhang G., Ali R. Behzad, Stingl U., Rothenberger A. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate] AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity. J. Mater. Chem. B. 2014; 37: 6406–6411. DOI: 10.1039/C4TB00611A
27. Steed J.W., Foster J.A. Exploiting cavities in supramolecular gels. Minireviews. Angew Chem. Int. Engl. 2010; 49: 6718–6724. DOI: 10.1002/anie.201000070
28. Savel’ev V.S., Kirienko A.I., editors. Klinicheskaya khirurgiya: natsional’noe rukovodstvo. V.1. M.: GEOTAR-Media; 2008. 864 р. (In Russ.).
29. Obolenskii V.N. Modern treatment methods of the chronic wounds. Meditsinskii Sovet. 2016; 10: 148–154 (In Russ., English abstract). DOI: 10.21518/2079-701X-2016-10-148-154
Review
For citations:
Valiev T.M., Petrova M.B., Mokhov E.M. PROSPECTS OF THE APPLICATION OF SUPRAMOLECULAR GELS IN EXPERIMENTAL SURGERY. Kuban Scientific Medical Bulletin. 2019;26(3):108-116. (In Russ.) https://doi.org/10.25207/1608-6228-2019-26-3-108-116